A BOUNDARY-VALUE PROBLEM FOR ANALYTIC SOLUTIONS OF AN ULTRAHYPERBOLIC EQUATION

By O. G. Owens

Introduction. In this paper there is defined a class $\mathfrak{Y}\left(X, \quad Y^{*}\right),(2.1)$, of functions $u\left(x_{1}, x_{2}, y_{1}^{*}, y_{2}^{*}\right)$ having the region $\left\{x_{1}^{2}+x_{2}^{2} \leq 1, y_{1}^{*^{2}}+y_{2}^{*^{2}}=1\right\}$ as domain and, by interchanging the variables, a class $\mathfrak{B}\left(X^{*}, Y\right)$ of functions $u\left(x_{1}^{*}, x_{2}^{*}, y_{1}, y_{2}\right)$ having the region $\left\{x_{1}^{*^{2}}+x_{2}^{*^{2}}=1, y_{1}^{2}+y_{2}^{2} \leq 1\right\}$ as domain. Any function $u\left(x_{1}, x_{2}, y_{1}^{*}, y_{2}^{*}\right)$ of class $\mathfrak{N}\left(X, Y^{*}\right)$ or function $u\left(x_{1}^{*}, x_{2}^{*}, y_{1}, y_{2}\right)$ of class $\mathfrak{B}\left(X^{*}, Y\right)$ will be called an analytic admissible boundary function. We define one other class $\mathfrak{F}(X, Y)$, (3.1), of functions $u\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ having $\left\{x_{1}^{2}+x_{2}^{2} \leq 1, y_{1}^{2}+y_{2}^{2} \leq 1\right\}$ for domain. Functions of this class $\mathfrak{F}(X, Y)$ are called analytic admissible functions.

Our principal result, (4.6), asserts that there exists an analytic admissible $u\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ which is a solution of the ultrahyperbolic partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=\frac{\partial^{2} u}{\partial y_{1}^{2}}+\frac{\partial^{2} u}{\partial y_{2}^{2}} \tag{E}
\end{equation*}
$$

on the region $\left\{x_{1}^{2}+x_{2}^{2} \leq 1, y_{1}^{2}+y_{2}^{2} \leq 1\right\}$ and which coincides with the arbitrarily given analytic admissible boundary function

$$
\begin{equation*}
u\left(x_{1}^{*}, x_{2}^{*}, y_{1}, y_{2}\right)=f\left(x_{1}^{*}, x_{2}^{*}, y_{1}, y_{2}\right) \tag{B.V}
\end{equation*}
$$

on $\left\{x_{1}^{*^{2}}+x_{2}^{*^{2}}=1, y_{1}^{2}+y_{2}^{2} \leq 1\right\}$, provided $f\left(x_{1}^{*}, x_{2}^{*}, y_{1}, y_{2}\right)$ belongs to a certain subclass, (4.6), of $\mathfrak{B}\left(X^{*}, Y\right)$. Moreover, the solution $u\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is unique, (4.2), with respect to analytic admissible functions.

1. Notation. $x=\left(x_{1}, x_{2}\right)$ and $p=\left(p_{1}, p_{2}\right)$ will denote points of the 2-dimensional Cartesian X-space and $y=\left(y_{1}, y_{2}\right)$ and $q=\left(q_{1}, q_{2}\right)$ points of the 2-dimensional Cartesian Y-space. Euclidean distances in these two spaces will be indicated by symbols such as:

$$
\begin{array}{ll}
|p x|=\left[\left(p_{1}-x_{1}\right)^{2}+\left(p_{2}-x_{2}\right)^{2}\right]^{\frac{1}{2}}, & |x|=\left[x_{1}^{2}+x_{2}^{2}\right]^{\frac{1}{2}} \\
|q y|=\left[\left(q_{1}-y_{1}\right)^{2}+\left(q_{2}-y_{2}\right)^{2}\right]^{\frac{1}{2}}, & |y|=\left[y_{1}^{2}+y_{2}^{2}\right]^{\frac{1}{2}}, \tag{1.1}
\end{array}
$$

and we shall agree that $x^{2}=x_{1}^{2}+x_{2}^{2}, y^{2}=y_{1}^{2}+y_{2}^{2}$, etc. Starring a letter will mean that the corresponding point is at unit distance from the origin, for example, x^{*} indicates a point of X-space with $\left|x^{*}\right|=1$. The unit circle $|x| \leq$ $1(|y| \leq 1)$ will be denoted by $C(X)(C(Y))$ and its boundary $\left|x^{*}\right|=$ $1\left(\left|y^{*}\right|=1\right)$ by $C^{*}(X)\left(C^{*}(Y)\right)$. The Green's function for the 2-dimensional Laplacian on $C(X)(C(Y))$ will be denoted by $K(p, x)(K(q, y))$. The usual

Received February 18, 1953.

