RINGS OF ARITHMETIC FUNCTIONS. II: THE NUMBER OF SOLUTIONS OF QUADRATIC CONGRUENCES

By Eckford Cohen

1. Introduction. Let r be a positive integer and F a field of characteristic zero containing the r-th roots of unity. As in [1] we say that a single-valued function $f(n)$ is (r, F) arithmetic, or simply arithmetic, if for every rational integer $a, f(a) \varepsilon F$ and $f(a)=f\left(a^{\prime}\right)$ if $a \equiv a^{\prime}(\bmod r)$. We defined the Cauchy product h of two functions f, g by the relation

$$
\begin{equation*}
h(n)=f \cdot g=\sum_{n=a+b(\bmod r)} f(a) g(b) \quad(0 \leq n<r), \tag{1.1}
\end{equation*}
$$

where a and b range over a residue system $(\bmod r)$ such that $n \equiv a+b(\bmod r)$. It was shown that the set of all (r, F) arithmetic functions, under the operations of function addition and Cauchy multiplication, forms a commutative semisimple algebra $\mathfrak{A}_{r}(F)=\mathfrak{A}$ which is the direct sum of r fields each isomorphic with F [1; Theorem 2].

Particular attention in [1] was paid to the function

$$
\begin{equation*}
c(n, r)=\sum_{\substack{(x, r)=1 \\ 0<x<r}} \epsilon(x n, r), \tag{1.2}
\end{equation*}
$$

where the summation is over a reduced residue system $(\bmod r)$ and where

$$
\begin{equation*}
\epsilon(x n, r)=e^{2 \pi i x n / r} \tag{1.3}
\end{equation*}
$$

The function (1.2) is the familiar Ramanujan sum which is factorable as a function of r,

$$
\begin{equation*}
c\left(n, r_{1} r_{2}\right)=c\left(n, r_{1}\right) c\left(n, r_{2}\right) \quad \text { if } \quad\left(r_{1}, r_{2}\right)=1 \tag{1.4}
\end{equation*}
$$

It was shown $[1 ;(3.10)]$ that the function c is orthogonal under Cauchy multiplication. More precisely, if $d|r, e| r$,

$$
c_{d} \cdot c_{e}=\sum_{n \equiv a+b(\bmod r)} c(a, d) c(b, e)= \begin{cases}r c(n, d) & (d=e) \tag{1.5}\\ 0 & (d \neq e) .\end{cases}
$$

This result can be interpreted algebraically [1; Theorem 3] to show that the set of all elements $\sum a_{d} c(n, d)$, where d ranges over the divisors of r, and a_{d} ranges over F, forms a semisimple subalgebra $\mathfrak{C} \subset \mathfrak{N}$, with orthogonal basis given by the elements $[1 / r] c(n, d)$.

The Ramanujan sum is but one of a large class of exponential functions

[^0]
[^0]: Received November 30, 1952; in revised form, November 5, 1953. This research was completed under contract with the Office of Air Research.

