MULTIVALENTLY STAR-LIKE FUNCTIONS

By M. S. Robertson

1. Introduction. Let $S(p)$ denote the class of functions

$$
\begin{equation*}
f(z)=a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots, \tag{1.1}
\end{equation*}
$$

regular and multivalently star-like with respect to the origin of order p in the unit circle $|z|<1$ [8]. This means geometrically that, for a range $\rho<r<1$, the image curve C_{r} of $|z|=r$, through the mapping $w=f(z)$, has the property that the vector joining the origin to the point $f(z)$ turns continuously through an angle $2 p \pi$ in the anti-clockwise direction as z traverses the circle $|z|=r$ once in the same direction. Analytically, the functions $f(z)$ of (1.1) are characterized by the conditions

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad \int_{0}^{2 \pi} \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} d \theta=2 p \pi \tag{1.2}
\end{equation*}
$$

for $z=r e^{i \theta}, \rho<r<1$. It is seen at once that $f(z)$ has exactly p zeros in $|z|<1$.
For functions $f(z)$ with a power series (1.1) which are multivalent of order p (but not necessarily star-like) in $|z|<1$ it was shown by Biernacki [1] that for $n>q$

$$
\begin{equation*}
\left|a_{n}\right| \leq A(p) \max \left\{\left|a_{1}\right|, \cdots,\left|a_{q}\right|\right\} n^{2 p-1} \tag{1.3}
\end{equation*}
$$

when $f(z)$ has q zeros in $|z|<1$. Goodman [3] has conjectured that perhaps (1.3) may be sharpened to be

$$
\begin{equation*}
\left|a_{n}\right| \leq \sum_{k=1}^{p} \frac{2 k(n+p)!}{(p+k)!(p-k)!(n-p-1)!\left(n^{2}-k^{2}\right)}\left|a_{k}\right| \tag{1.4}
\end{equation*}
$$

for $n>p$. A great deal of evidence has piled up during the past four decades to indicate that (1.4) is true in the univalent case $p=1\left(\left|a_{n}\right| \leq n\left|a_{1}\right|\right)$, although a proof has not been found except for several important sub-classes.

For the class $S(1)$, (1.4) is known to be true [6]. For the class $S(2)$, Goodman [4] has shown that (1.4) is correct for $n=3$, provided all the coefficients a_{n} arere al. In this case

$$
\begin{equation*}
\left|a_{3}\right| \leq 5\left|a_{1}\right|+4\left|a_{2}\right| . \tag{1.5}
\end{equation*}
$$

The method of proof of (1.5) made use of the approximating polygonal functions obtained by the Schwarz-Christoffel transformation. It was stated [4] that a similar proof gives the sharp inequality

$$
\begin{equation*}
\left|a_{p+1}\right| \leq(p-1)(2 p+1)\left|a_{p-1}\right|+2 p\left|a_{p}\right| \tag{1.6}
\end{equation*}
$$

when $a_{1}=a_{2}=\cdots=a_{p-2}=0$, and all the coefficients are real.
Received November 17, 1952.

