MULTIVALENTLY STAR-LIKE FUNCTIONS

By M. S. Robertson

1. Introduction. Let S(p) denote the class of functions

$$f(z) = a_1 z + a_2 z^2 + \dots + a_n z^n + \dots,$$

regular and multivalently star-like with respect to the origin of order p in the unit circle |z| < 1 [8]. This means geometrically that, for a range $\rho < r < 1$, the image curve C_r of |z| = r, through the mapping w = f(z), has the property that the vector joining the origin to the point f(z) turns continuously through an angle $2p\pi$ in the anti-clockwise direction as z traverses the circle |z| = r once in the same direction. Analytically, the functions f(z) of (1.1) are characterized by the conditions

(1.2)
$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \qquad \int_0^{2\pi} \Re\left\{\frac{zf'(z)}{f(z)}\right\} d\theta = 2p\pi,$$

for $z = re^{i\theta}$, $\rho < r < 1$. It is seen at once that f(z) has exactly p zeros in |z| < 1. For functions f(z) with a power series (1.1) which are multivalent of order p (but not necessarily star-like) in |z| < 1 it was shown by Biernacki [1] that for n > q

$$|a_n| \leq A(p) \max \{|a_1|, \cdots, |a_q|\} n^{2p-1},$$

when f(z) has q zeros in |z| < 1. Goodman [3] has conjectured that perhaps (1.3) may be sharpened to be

$$|a_n| \le \sum_{k=1}^p \frac{2k(n+p)!}{(p+k)!(p-k)!(n-p-1)!(n^2-k^2)} |a_k|$$

for n > p. A great deal of evidence has piled up during the past four decades to indicate that (1.4) is true in the univalent case p = 1 ($|a_n| \le n |a_1|$), although a proof has not been found except for several important sub-classes.

For the class S(1), (1.4) is known to be true [6]. For the class S(2), Goodman [4] has shown that (1.4) is correct for n=3, provided all the coefficients a_n are n=1. In this case

$$|a_3| \leq 5 |a_1| + 4 |a_2|.$$

The method of proof of (1.5) made use of the approximating polygonal functions obtained by the Schwarz-Christoffel transformation. It was stated [4] that a similar proof gives the sharp inequality

$$|a_{p+1}| \le (p-1)(2p+1) |a_{p-1}| + 2p |a_p|,$$

when $a_1 = a_2 = \cdots = a_{r-2} = 0$, and all the coefficients are real.

Received November 17, 1952.