THE HARMONIC ANALYSIS OF BOUNDED FUNCTIONS

BY HARRY POLLARD

1. Introduction. Recent advances in the theory of group algebras reveal that a serious gap exists in the harmonic analysis of functions bounded on the real line. In analytic form the problem left open is that of *spectral synthesis* [4], which may be stated in the following form. Let ϕ be a bounded measurable function on $(-\infty, \infty)$. By its *spectrum* $\sigma(\phi)$ we mean the set of real numbers λ with the following property: if h is a function in $L(-\infty, \infty)$ such that

$$h * \phi \equiv \int h(x - y)\phi(y) \, dy = 0$$

for all real values of x, then the Fourier transform of h

$$H(t) = \int e^{ixt} h(x) \ dx$$

vanishes at $t = \lambda$. (We omit limits from doubly infinite integrals.) The problem is this: is it true that any function h in $L(-\infty, \infty)$ whose Fourier transform vanishes on $\sigma(\phi)$ has the property $h * \phi \equiv 0$?

It follows from a result of Agmon and Mandelbrojt [1] that under the additional condition $xh(x) \in L$ the conclusion is correct. In his unpublished Harvard lectures (1949) Beurling showed that the weaker auxiliary condition $|x|^{1/2}h(x) \in L$ is sufficient. The main purpose of this paper is to give some improvements of these results (§11).

At the same time, in order to make available to analysts the results of a fragmentary literature, we present a brief account of the spectral theory of bounded functions. In place of the harmonic transform used in one form or another by previous writers, [1], [3], [7], we use Riemann's device of two integrations to obtain a spectral function. This makes it possible to give an exposition which does not invoke complex variable theory. As a consequence we obtain simple new real variable proofs of Wiener's Tauberian theorem (§3, §5) and Beurling's theorem on almost periodic functions (§10).

A full account of the problem from the algebraist's point of view, together with an exhaustive bibliography, has been given by Eberlein [8].

2. An alternative definition of the spectrum. Let $\phi(x)$ be a measurable function bounded on $(-\infty, \infty)$. Define a generalized Fourier transform by

(2.1)
$$F(t) = \int_{|x| \ge 1} \frac{e^{ixt}}{-x^2} \phi(x) \, dx + \int_{-1}^1 \frac{e^{ixt} - 1 - ixt}{-x^2} \phi(x) \, dx.$$

This is simply Bochner's 2-transform [5]. F(t) is continuous for all values of t.

Received October 23, 1952. The research for this paper was supported in part by a grant from the Office of Naval Research.