THE HARMONIC ANALYSIS OF BOUNDED FUNCTIONS

By Harry Pollard

1. Introduction. Recent advances in the theory of group algebras reveal that a serious gap exists in the harmonic analysis of functions bounded on the real line. In analytic form the problem left open is that of spectral synthesis [4], which may be stated in the following form. Let ϕ be a bounded measurable function on $(-\infty, \infty)$. By its spectrum $\sigma(\phi)$ we mean the set of real numbers λ with the following property: if h is a function in $L(-\infty, \infty)$ such that

$$
h * \phi \equiv \int h(x-y) \phi(y) d y=0
$$

for all real values of x, then the Fourier transform of h

$$
H(t)=\int e^{i x t} h(x) d x
$$

vanishes at $t=\lambda$. (We omit limits from doubly infinite integrals.) The problem is this: is it true that any function h in $L(-\infty, \infty)$ whose Fourier transform vanishes on $\sigma(\phi)$ has the property $h * \phi \equiv 0$?

It follows from a result of Agmon and Mandelbrojt [1] that under the additional condition $x h(x) \varepsilon L$ the conclusion is correct. In his unpublished Harvard lectures (1949) Beurling showed that the weaker auxiliary condition $|x|^{1 / 2} h(x) \varepsilon L$ is sufficient. The main purpose of this paper is to give some improvements of these results (§11).

At the same time, in order to make available to analysts the results of a fragmentary literature, we present a brief account of the spectral theory of bounded functions. In place of the harmonic transform used in one form or another by previous writers, [1], [3], [7], we use Riemann's device of two integrations to obtain a spectral function. This makes it possible to give an exposition which does not invoke complex variable theory. As a consequence we obtain simple new real variable proofs of Wiener's Tauberian theorem (§3, §5) and Beurling's theorem on almost periodic functions ($\$ 10$).

A full account of the problem from the algebraist's point of view, together with an exhaustive bibliography, has been given by Eberlein [8].
2. An alternative definition of the spectrum. Let $\phi(x)$ be a measurable function bounded on $(-\infty, \infty)$. Define a generalized Fourier transform by

$$
\begin{equation*}
F(t)=\int_{|x| \geq 1} \frac{e^{i x t}}{-x^{2}} \phi(x) d x+\int_{-1}^{1} \frac{e^{i x t}-1-i x t}{-x^{2}} \phi(x) d x \tag{2.1}
\end{equation*}
$$

This is simply Bochner's 2-transform [5]. $\quad F(t)$ is continuous for all values of t.
Received October 23, 1952. The research for this paper was supported in part by a grant from the Office of Naval Research.

