SOME THEOREMS ON KUMMER'S CONGRUENCES

By L. Carlitz

1. Introduction. Let p be a fixed prime and let $\{a_m\}$ be a sequence of rational numbers that are integral (mod p); somewhat more generally we may suppose that the a_m are integral p-adic numbers. Let

(1.1)
$$\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} a_{m+s(p-1)} a_p^{r-s} \equiv 0 \pmod{p^r}$$

for all $m \ge r \ge 1$. We shall call (1.1) Kummer's congruence for $\{a_m\}$. For example (1.1) holds for p > 2, $a_m = E_m$, the Euler number in the even suffix notation. It is sometimes convenient to assume a little less, namely that $p-1 \not < m$, in which case we take $m \ge r+1$; this is the case when $a_m = B_m/m$, where B_m is the Bernoulli number in the even suffix notation (see for example [6; Chapter 14]). For simplicity we shall usually assume that (1.1) holds for all $m \ge r \ge 1$.

In this note we first prove the following two theorems.

THEOREM 1. If $\{a_m\}$ satisfies (1.1) and $\{b_m\}$ satisfies a like congruence then the same is true for $\{c_m\} = \{a_m b_m\}$.

THEOREM 2. Let $c_m^{(k)} = m^k a_m$, $k \ge 1$. If $\{a_m\}$ satisfies (1.1) then

(1.2)
$$\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} c_{m+sp(p-1)}^{(k)} a_p^{r-s} \equiv 0 \pmod{p^r}.$$

Extensions of these theorems will be found in Theorems 1', 3, 4 below. A number of applications are also given.

Finally we consider Kummer's congruences for the sequence $\{c_m\}$, where

(1.3)
$$c_m = \sum_{s=0}^m \binom{m}{s} a_s b_{m-s}$$

Put $f(x) = \sum_{n=1}^{\infty} a_m x^m / m!$, $g(x) = \sum_{n=1}^{\infty} b_m x^m / m!$. If we assume that $a_p \equiv b_p \pmod{p}$, and

(1.4)
$$(D^{p} - a_{p}D)f(x) = p \sum_{0}^{\infty} A_{m}f^{m}(x),$$

where the A_m are integral (mod p), and a like formula for g(x), then we can prove that c_m , defined by (1.3), satisfies

(1.5)
$$\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} c_{m+s(p-1)} a_p^{r-s} \equiv 0 \pmod{p^r}.$$

Received November 15, 1952.