SOME THEOREMS ON KUMMER'S CONGRUENCES

By L. Carlitz

1. Introduction. Let p be a fixed prime and let $\left\{a_{m}\right\}$ be a sequence of rational numbers that are integral $(\bmod p)$; somewhat more generally we may suppose that the a_{m} are integral p-adic numbers. Let

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} a_{m+s(p-1)} a_{p}^{r-s} \equiv 0 \quad\left(\bmod p^{r}\right) \tag{1.1}
\end{equation*}
$$

for all $m \geq r \geq 1$. We shall call (1.1) Kummer's congruence for $\left\{a_{m}\right\}$. For example (1.1) holds for $p>2, a_{m}=E_{m}$, the Euler number in the even suffix notation. It is sometimes convenient to assume a little less, namely that $p-1 \nmid m$, in which case we take $m \geq r+1$; this is the case when $a_{m}=B_{m} / m$, where B_{m} is the Bernoulli number in the even suffix notation (see for example [6; Chapter 14]). For simplicity we shall usually assume that (1.1) holds for all $m \geq r \geq 1$.

In this note we first prove the following two theorems.
Theorem 1. If $\left\{a_{m}\right\}$ satisfies (1.1) and $\left\{b_{m}\right\}$ satisfies a like congruence then the same is true for $\left\{c_{m}\right\}=\left\{a_{m} b_{m}\right\}$.

Theorem 2. Let $c_{m}^{(k)}=m^{k} a_{m}, k \geq 1$. If $\left\{a_{m}\right\}$ satisfies (1.1) then

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} c_{m+s p(p-1)}^{(k)} a_{p}^{r-s} \equiv 0 \quad\left(\bmod p^{r}\right) \tag{1.2}
\end{equation*}
$$

Extensions of these theorems will be found in Theorems $1^{\prime}, 3,4$ below. A number of applications are also given.

Finally we consider Kummer's congruences for the sequence $\left\{c_{m}\right\}$, where

$$
\begin{equation*}
c_{m}=\sum_{s=0}^{m}\binom{m}{s} a_{s} b_{m-s} \tag{1.3}
\end{equation*}
$$

Put $f(x)=\sum_{1}^{\infty} a_{m} x^{m} / m!, g(x)=\sum_{1}^{\infty} b_{m} x^{m} / m!$. If we assume that $a_{p} \equiv b_{p}$ $(\bmod p)$, and

$$
\begin{equation*}
\left(D^{p}-a_{p} D\right) f(x)=p \sum_{0}^{\infty} A_{m} f^{m}(x) \tag{1.4}
\end{equation*}
$$

where the A_{m} are integral $(\bmod p)$, and a like formula for $g(x)$, then we can prove that c_{m}, defined by (1.3), satisfies

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} c_{m+s(p-1)} a_{p}^{r-s} \equiv 0 \quad\left(\bmod p^{r}\right) . \tag{1.5}
\end{equation*}
$$

Received November 15, 1952.

