LEAST DETERMINANTS OF INTEGRAL QUADRATIC FORMS

By A. Oppenheim

O'Connor and Pall [1] have determined the least possible determinant for positive definite integral quadratic forms. The signature of such a form in s variables is s. If the least determinant is $\delta(s, s)$, then

$$
\begin{aligned}
\delta(s, s)= & 1 / 2^{s}(s \equiv 0), & & 2 / 2^{s}(s \equiv \pm 1) \\
& 3 / 2^{s}(s \equiv \pm 2), & & 4 / 2^{s}(s \equiv \pm 3,4)
\end{aligned}
$$

the congruences being modulo 8 . Representative s-ary forms f_{s} are given in each case.

In another connection I have had to find the numerically least determinants for indefinite integral quadratic forms. The results naturally depend on those of O'Connor and Pall and also on a theorem of Meyer (see Dickson [2]) which states that an integral indefinite form in 5 or more variables must represent zero properly, i.e. for integers with greatest common divisor unity.
2. Let g_{m} be an integral quadratic form in m variables with signature $\pm s$ and rank m, where $s \geq 0$ so that

$$
m=s+2 r
$$

for integral $r \geq 0$. If $r=0$, the form will be definite. Let $\Delta(g)$ denote the determinant of g_{m} and let $\delta(m, s)$ denote the minimum of $|\Delta(g)|$. We then have the following theorem.

Theorem. $\delta(m, s)$ has the values

$$
\begin{gathered}
1 / 2^{m}(s \equiv 0), \quad 2 / 2^{m}(s \equiv \pm 1), \quad 3 / 2^{m}(s \equiv \pm 2) \\
4 / 2^{m}(s \equiv \pm 3,4 \quad(\bmod 8))
\end{gathered}
$$

Forms for which equality occurs are

$$
g_{m}=x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{2 r-1} x_{2 r} \pm f_{s}\left(y_{1}, \cdots, y_{s}\right)
$$

where $f_{s}=0$ if $s=0$, and $f_{s}(s \geq 1)$ is the form defined by O'Connor and Pall:

$$
\begin{aligned}
& f_{1}=y_{1}^{2}, \quad f_{2}=y_{1}^{2}+y_{1} y_{2}+y_{2}^{2}, \quad f_{3}=f_{2}+y_{2} y_{3}+y_{3}^{2} \\
& f_{4}=f_{3}+2 y_{3} y_{4}+2 y_{4}^{2} \\
& f_{5}=\sum_{i=1}^{3}\left(y_{i}^{2}+y_{i} y_{i+1}\right)+y_{4}^{2}+2 y_{4} y_{5}+2 y_{5}^{2} \\
& f_{i}=\sum_{i=1}^{i=2}\left(y_{i}^{2}+y_{i} y_{i+1}\right)+y_{i-1}^{2}+3 y_{i-1} y_{j}+4 y_{i}^{2} \quad(j=6,7,8)
\end{aligned}
$$

Received May 29, 1952.

