A PROBLEM OF HURWITZ AND NEWMAN

By Jean Dieudonné

1. Hurwitz [3] has determined the maximal sets of matrices A_{k} of order n, having complex elements, and satisfying the conditions

$$
\begin{gather*}
A_{k}^{2}=I \tag{1}\\
A_{h} A_{k}=-A_{k} A_{h} \quad \text { for } \quad h \neq k . \tag{2}
\end{gather*}
$$

Newman [4] solved the same problem when the equations (1) are replaced by

$$
\begin{equation*}
A_{k}^{2}=-I \tag{3}
\end{equation*}
$$

As an application of the methods I have recently developed for the study of systems of involutive collineations or correlations which are "projectively permutable" ([1] and [2]), I shall treat in this paper the following general problem, of which Hurwitz's and Newman's are very particular cases:
K being an arbitrary sfield of characteristic $\neq 2, E$ an n-dimensional right vector space over K, σ an automorphism of K and γ an element of K.such that $\gamma^{\sigma}=\gamma$ and $\xi^{\sigma^{2}}=\gamma^{-1} \xi \gamma$ for $\xi \varepsilon K$, determine the maximal number of semi-linear transformations $u_{k}(1 \leq k \leq p)$ of E, relative to the automorphism σ, satisfying the relations

$$
\begin{array}{rlrl}
u_{k}^{2}(x) & =x \gamma & & \text { for } \\
& x \in E & \text { and every } k, \tag{5}\\
u_{h} u_{k} & =-u_{k} u_{h} & & \text { for }
\end{array} \quad h \neq k . \quad l l
$$

2. Let $v_{k}=u_{1}^{-1} u_{k}$ for $k \geq 2$; then the v_{k} are linear mappings of E onto itself, satisfying the following relations

$$
\begin{array}{rlr}
v_{k}^{2}(x) & =-x & (k \geq 2) \\
v_{h} v_{k} & =-v_{k} v_{h} & (h \geq 2, k \geq 2, h \neq k) \\
u_{1} v_{k} & =-v_{k} u_{1} & (k \geq 2) .
\end{array}
$$

We now distinguish two cases:
(A) -1 is not the square of any element of K. Let K_{1} be the quadratic extension of K, obtained by adjoining to K an element i such that $i^{2}=-1$ (see [2; §4]; K_{1} is here the tensor product of K and the commutative field $Z(i)$, over the center Z of K, and $Z(i)$ is the center of K_{1}). Let τ be the only automorphism of K_{1} distinct from the identity and leaving invariant the elements of K, that is, such that $i^{\tau}=-i$; on the other hand, the automorphism σ of K can be extended to an automorphism of K_{1}, which we shall again note σ, by the convention $i^{\sigma}=i^{\tau}=-i ; \sigma$ and τ obviously commute. We can then consider E as a vector

Received October 27, 1952.

