A PROBLEM OF HURWITZ AND NEWMAN

By Jean Dieudonné

1. Hurwitz [3] has determined the maximal sets of matrices A_k of order n, having complex elements, and satisfying the conditions

(2)
$$A_h A_k = -A_k A_h$$
 for $h \neq k$.

Newman [4] solved the same problem when the equations (1) are replaced by

$$A_k^2 = -I.$$

As an application of the methods I have recently developed for the study of systems of involutive collineations or correlations which are "projectively permutable" ([1] and [2]), I shall treat in this paper the following general problem, of which Hurwitz's and Newman's are very particular cases:

K being an arbitrary sfield of characteristic $\neq 2$, E an n-dimensional right vector space over K, σ an automorphism of K and γ an element of K such that $\gamma^{\sigma} = \gamma$ and $\xi^{\sigma^*} = \gamma^{-1} \xi \gamma$ for $\xi \in K$, determine the maximal number of semi-linear transformations $u_k (1 \leq k \leq p)$ of E, relative to the automorphism σ , satisfying the relations

(4)
$$u_k^2(x) = x\gamma$$
 for $x \in E$ and every k ,

(5)
$$u_h u_k = -u_k u_h$$
 for $h \neq k$.

2. Let $v_k = u_1^{-1}u_k$ for $k \ge 2$; then the v_k are *linear* mappings of E onto itself, satisfying the following relations

$$(6) v_k^2(x) = -x (k \ge 2)$$

(7)
$$v_h v_k = -v_k v_h \qquad (h \ge 2, \, k \ge 2, \, h \ne k)$$

(8) $u_1v_k = -v_ku_1 \qquad (k \ge 2).$

We now distinguish two cases:

(A) -1 is not the square of any element of K. Let K_1 be the quadratic extension of K, obtained by adjoining to K an element i such that $i^2 = -1$ (see [2; §4]; K_1 is here the tensor product of K and the commutative field Z(i), over the center Z of K, and Z(i) is the center of K_1). Let τ be the only automorphism of K_1 distinct from the identity and leaving invariant the elements of K, that is, such that $i^{\tau} = -i$; on the other hand, the automorphism σ of K can be extended to an automorphism of K_1 , which we shall again note σ , by the convention $i^{\sigma} = i^{\tau} = -i; \sigma$ and τ obviously commute. We can then consider E as a vector

Received October 27, 1952.