THE ASYMPTOTIC BEHAVIOUR OF POWERS OF MATRICES. II.

By Werner Gautschi

This note is an addendum to our paper [3]. We will extend the results obtained in II of [3] by introducing more general norms, and from this we derive further sequences converging towards ω_{A}. The enumeration of the equations, theorems and sections will be continued from [3].

III. Generalizations

1. To any column-vector $x=\left(x_{1}, \cdots, x_{n}\right)$ of the n-dimensional complex Euclidean space let a number $\phi(x)$, called the norm of x, be assigned, satisfying the following three conditions:
(i) $\phi(x)>0$ except for the null vector $x=0$, for which $\phi(0)=0$,
(ii) $\phi(\lambda x)=|\lambda| \phi(x)$ for any complex scalar λ,
(iii) $\phi(x+y) \leq \phi(x)+\phi(y)$.

Furthermore, suppose that $\phi(x)$ is bounded over the set of vectors with Euclidean length $|x|=1$,

$$
\begin{equation*}
\phi(x) \leq C \tag{iv}
\end{equation*}
$$

$$
(|x|=1)
$$

Let a function of the vector $x, \psi(x)$, satisfy (i) and (ii) and be bounded from below by a positive constant for all vectors x with $|x|=1$,

$$
\begin{equation*}
\psi(x) \geq c>0 \tag{v}
\end{equation*}
$$

$$
(|x|=1)
$$

Then for an $n \times n$ matrix $A=\left(a_{\nu \mu}\right)$ the ratio $\phi(A x) / \psi(x)$ remains bounded over the set of all vectors $x \neq 0$; we may therefore define its least upper bound

$$
\begin{equation*}
\Omega_{\phi, \psi}(A) \equiv \sup _{x \neq 0} \frac{\phi(A x)}{\psi(x)} \tag{28}
\end{equation*}
$$

as the (upper) norm of A induced by ϕ and ψ. (Compare for this definition A. Ostrowski [5].) $\Omega_{\phi, \psi}(A)$ is a special case of the most general norm $\Omega(A)$ defined by the three properties:
(vi) $\Omega(A)>0$ except when $A=0$, in which case $\Omega(0)=0$,
(vii) $\Omega(\lambda A)=|\lambda| \Omega(A)$ for any complex scalar λ,
(viii) $\Omega(A+B) \leq \Omega(A)+\Omega(B), A, B$ being $n \times n$ matrices.

If in particular we take $\psi(x)=\phi(x)$ assuming of course that ϕ satisfies (v), $\Omega_{\phi} \equiv \Omega_{\phi, \phi}$ also satisfies

$$
\begin{equation*}
\Omega_{\phi}(A B) \leq \Omega_{\phi}(A) \Omega_{\phi}(B) \tag{ix}
\end{equation*}
$$

$$
\left(\Omega_{\phi} \equiv \Omega_{\phi, \phi}\right),
$$

Received November 5, 1952. This note is part of the author's doctoral dissertation presented to the University of Basle, Switzerland.

