PROPERTIES AND FACTORIZATIONS OF MATRICES DEFINED BY THE OPERATION OF PSEUDO-TRANSPOSITION

By Leo Katz and Ingram Olkin

1. Introduction. A matrix $C: n \times n$ (i.e., of n rows and n columns) is (p, q) pseudo-orthogonal if it satisfies the relation

$$
\begin{equation*}
C J C^{\prime}=J, \tag{1.1}
\end{equation*}
$$

where C^{\prime} is the transpose of $C, J=I_{p} \dot{+}\left(-I_{q}\right), \dot{+}$ is the direct sum, I_{p} is the identity matrix of order p, and $p+q=n$. This implies the invariance of the quadratic form $x^{\prime} J x, x: n \times 1$ under a pseudo-orthogonal transformation. In this sense, a pseudo-orthogonal transformation is a rotation in a pseudo-Euclidean space of p and q dimensions. Throughout this paper, we shall consider p and q as fixed.

Many writers have investigated properties of pseudo-orthogonal matrices; in particular, Lee [1] and Hsu [2] have obtained factorizations of such matrices. Lorentz matrices and symplectic matrices (after a permutation on rows and columns) are examples of p-orthogonal matrices, the former being a special case with $p=1, q=3$.

By defining the operation of pseudo-transposition, we obtain unified definitions of pseudo-symmetric, pseudo-skew, and pseudo-orthogonal matrices (henceforth denoted by the prefix p-, e.g., p-orthogonal), which are analogous to the definitions using ordinary transposition. Also, certain analogs of theorems involving transposition hold for p-transposition. We obtain, in Theorem 4.2, a new factorization of a p-orthogonal matrix in terms of a p-skew matrix, and in Theorem 5.2, the analog of the Toeplitz factorization (see [3; 80]). The matrices considered in this paper are real.
2. Definitions. Postmultiplication of both sides of (1.1) by J gives $C\left(J C^{\prime} J\right)=I$, which is strongly reminiscent of the form $C C^{\prime}=I$ for orthogonal matrices and suggests the Fundamental Operation: $\mathbf{C}^{0}=J C^{\prime} J$ is the p-transpose of C. If

$$
X=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right),
$$

where $X: n \times n, X_{1}: p \times p, X_{4}: q \times q, p+q=n$, then

$$
X^{0}=\left(\begin{array}{rr}
X_{1}^{\prime} & -X_{3}^{\prime} \tag{2.1}\\
-X_{2}^{\prime} & X_{4}^{\prime}
\end{array}\right) .
$$

Received August 11, 1952. This paper was prepared under the sponsorship of the Office of Naval Research.

