IDEALS IN A CLASS OF COMMUTATIVE BANACH ALGEBRAS

By John Wermer

In the following, A shall always mean a commutative semi-simple Banach algebra, M the space of regular maximal ideals of A and \overline{A} the Banach space conjugate to A. For $f \in A$, $\phi \in \overline{A}$, (f, ϕ) means the value at f of the functional ϕ . If A' is a subspace of A such that $(f, \phi) = 0$ for all $f \in A'$, we write $\phi(A') = 0$. If $f \in A$ and $m \in M$, f(m) denotes the value at m of the complex-valued function on M associated to f by the Gelfand mapping. If I is an ideal of A, h(I), the "hull" of I, means the set of $m \in M$ with $I \subseteq m$. h(I) is evidently a closed set.

In this note we study certain ideals in a class of Banach algebras which includes the group-algebras of locally compact Abelian groups.

DEFINITION. A has property (1) if given any m_0 in M and any neighborhood of m_0 , there is some $f \in A$ with $f(m_0) = 1$ and f(m) = 0 outside the given neighborhood. An algebra satisfying (1) is called "regular".

DEFINITION. A has property (2) if the set of $f \in A$ with f(m) vanishing outside some compact set is dense in A.

DEFINITION. G(A) denotes the family of linear isometric operators U taking A onto A with $Ux \cdot y = Uy \cdot x$ for any $x, y \in A$.

DEFINITION. A has property (3) if every hyperplane of A which is taken into itself by every U in G(A) is an ideal in A.

It is well-known that a group algebra satisfies (1) and (2). Also in this case every translation operator, f(x) into f(x + t), is in G(A) and every closed translation invariant subspace is an ideal. Hence a group algebra also satisfies (3). We shall prove:

THEOREM 1. Let A satisfy (1), (2) and (3). If I is a closed ideal in A included in precisely one maximal ideal m_0 , then $I = m_0$.

THEOREM 2. Let A satisfy (1), (2) and (3). Suppose in addition that for $f \in A, \epsilon > 0$ there is some $g \in A$ with $|| fg - f || < \epsilon$. Let I be a closed ideal such that the boundary of h(I) has no perfect nonempty subset. Then I is exactly the intersection of maximal ideals containing it.

A group algebra satisfies the additional condition of Theorem 2 since a group algebra contains in fact a directed system e_{λ} with $e_{\lambda}f$ converging to f for every f in the algebra.

THEOREM 2'. Let A have a unit and a set of generators x which have inverses and are such that ||xy|| = ||y|| for all $y \in A$. Then the conclusion of Theorem 2 remains true.

Received August 4, 1952. The author is a National Science Foundation fellow.