A NOTE ON MEASURES IN BOOLEAN ALGEBRAS

By Edwin Hewitt

1. Introductory remarks. Kappos [2], [3] has considered the notion of a countably additive measure on a Boolean algebra, and a correction to Kappos [2] has been published recently by Sikorsky [4]. The definition of countable additivity given by both of these authors is essentially the following. Let \mathfrak{A} be an abstract Boolean algebra with partial ordering \leq and with Boolean operations $+, \cdot,$ and '. A real-valued function ϕ defined on \mathfrak{A} is a finitely additive measure if

(1.1)
$$\sup_{a\in\mathfrak{A}} |\phi(a)| < +\infty$$

and

(1.2)
$$\phi(a+b) = \phi(a) + \phi(b)$$
 for all $a, b \in \mathfrak{A}$ such that $ab = 0$.

If

(1.3) $\lim_{n\to\infty} \phi(a_n) = 0$ for all decreasing sequences $\{a_n\}_{n=1}^{\infty} \subset \mathfrak{A}$ such that $\prod_{n=1}^{\infty} a_n = 0$,

then ϕ is said to be countably additive. It is simple to verify that ϕ is countably additive if and only if

(1.4)
$$\phi\left(\sum_{n=1}^{\infty} b_n\right) = \sum_{n=1}^{\infty} \phi(b_n) \quad \text{for all} \quad \{b_n\}_{n=1}^{\infty} \subset \mathfrak{A}$$

such that

$$\sum_{n=1}^{\infty} b_n \mathfrak{e} \mathfrak{A} \quad \text{and} \quad b_n b_m = 0 \quad \text{if} \quad n \neq m.$$

Although the operations + and \cdot are defined *a priori* only for finite sets of elements in \mathfrak{A} , the inclusion relation \leq in \mathfrak{A} gives us an unequivocal interpretation for the symbols \sum and \prod in terms of least upper bounds and greatest lower bounds, respectively, whenever these bounds exist.

For algebras of sets, on the other hand, we have a definition of countable additivity which is quite different from (1.3). Let α be an algebra of subsets of a set X. A real-valued function ϕ defined for all A $\epsilon \alpha$ is, for our purposes, a finitely additive measure if

(1.5)
$$\sup_{A \in \mathcal{C}} |\phi(A)| < +\infty;$$

(1.6)
$$\phi(A \cup B) = \phi(A) + \phi(B)$$
 for all A, B ε a such that $A \cap B = 0$.

Received September 27, 1952.