EXCEPTIONAL VALUES OF ENTIRE AND MEROMORPHIC FUNCTIONS

By S. M. Shah

1. Introduction. This paper is a continuation of my paper [5] and we follow the same notation.

Let $f(z)$ be an entire function of finite order ρ and α be any (finite) complex number. Then

$$
\begin{equation*}
f(z)-\alpha=z^{n} P(z, \alpha) \exp \{Q(z, \alpha)\} \tag{1}
\end{equation*}
$$

where

$$
Q(z, \alpha)=a z^{z^{\alpha(\alpha)}}+\cdots, \quad a=T e^{i \beta} \neq 0
$$

is a polynomial of degree $q(\alpha)$ and $P(z, \alpha)$ is a canonical product (c.p.) of order $\rho_{1}(\alpha)$ and genus $p(\alpha)$. Let E denote the set of positive non-decreasing functions $\phi(x)$ such that

$$
\int_{A}^{\infty} \frac{d x}{x \phi(x)}
$$

is convergent. (The condition that $\phi(x)$ be non-decreasing in Shah's theorem $[4 ; 23]$ is not necessary; see Boas [1]). If for some $\phi \subset E$

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\lim \inf } \frac{T(r)}{n(r, \alpha) \phi(r)}>0 \tag{2}
\end{equation*}
$$

we say α is an exceptional value (e.v.) E for $f(z)$. If α is an e.v. E then the order ρ is an integer and we have either (i) $\rho_{1}(\alpha)<\rho=q(\alpha)$ or (ii) $q(\alpha)=\rho=$ $\rho_{1}(\alpha) ; p(\alpha)=\rho-1$. Conversely if (i) holds then α is an e.v. E. In § 6 we show by means of an example that if (ii) holds then α may or may not be an e.v. E. We also prove

Theorem 1. Let $f(z)$ be an entire function of finite order ρ and let α be e.v. E for $f(z)$. Then given an arbitrarily small $\delta>0$, there exist ρ sectors with center at the origin defined by

$$
\begin{equation*}
\left|\arg z-\left(2 \nu+1-\frac{\beta}{\pi}\right) \frac{\pi}{\rho}\right| \leq \frac{\pi}{2 \rho}-\delta ; \quad \nu=0,1, \cdots \rho-1 \tag{3}
\end{equation*}
$$

in which $f(z) \rightarrow \alpha$ uniformly as $z \rightarrow \infty$. The number of finite asymptotic values of $f(z)$ is ρ.

This result cannot be extended to meromorphic functions. In fact we have Received June 26, 1952.

