THE KERNEL FUNCTION IN THE GEOMETRY OF MATRICES

By Josephine Mitchell

Abstract

1. Introduction. Let $Z^{(n, n)}=Z=\left(z_{j k}\right)(1 \leq j \leq m ; 1 \leq k \leq n)$ be a matrix of m rows and n columns whose elements are complex numbers; $Z^{* \prime}$ the conjugate transpose of Z and I the identity matrix. We consider the set of points such that $Z Z^{* \prime}<I$, consisting of all points Z with $m n$ complex coordinates (z_{11}, z_{12}, $\left.\cdots, z_{21}, \cdots, z_{m n}\right)$ for which the hermitian quadratic form, $\sum_{i, k=1}^{m}\left(\delta_{i k}-\right.$ $\left.\sum_{i=1}^{n} z_{i} z_{k i}^{*}\right) u_{i} u_{k}^{*}$, in the auxiliary variables (u_{1}, \cdots, u_{m}) is positive definite [8]. The symbol " Z " stands for both the matrix Z and the point Z since it is always clear from the context which is meant. By defining a neighborhood of a point Z, for example, as the set of points Y such that $\left|y_{i k}-z_{i k}\right|<\epsilon(1 \leq j \leq m$; $1 \leq k \leq n$), it can be shown that the set of points Z such that $Z Z^{* \prime}<I$ forms a convex domain D, embedded in $2 m n$-dimensional Euclidean space. If Z is a symmetric matrix ($Z=Z^{\prime}$), the corresponding set of points $Z=\left(z_{11}, \cdots, z_{1 n}\right.$, $z_{22}, \cdots, z_{n n}$) lies in $n(n+1)$-dimensional Euclidean space, and, if Z is skewsymmetric ($Z=-Z^{\prime}$), in $n(n-1)$-dimensional Euclidean space. These three domains form part of a set of six irreducible domains, possessing the property that all other bounded simple symmetric analytic spaces can be derived from them by analytical mappings and topological products [8, 9$]$.

We construct the kernel function of the three domains mentioned above by analytic methods introduced by Bergman in the theory of functions of one and several complex variables [3]. Let L^{2} be the class of analytic functions $f(Z)=$ $f\left(z_{11}, \cdots, z_{m n}\right)$, with finite norm, $N(f)=\left[\int \ddot{b}^{\prime} \int|f(Z)|^{2} d V\right]^{\frac{1}{2}}$, where $d V$ is the Euclidean volume element. For the class L^{2} we find the solution of a certain extremal problem and by means of a result due to Bergman show the connection with the kernel function of the domain. The kernel function turns out to be

$$
\begin{equation*}
K\left(T, Z^{* \prime}\right)=\frac{1}{V\left[\operatorname{det}\left(I-T Z^{* \prime}\right)\right]^{p}}, \tag{1.1}
\end{equation*}
$$

where $p=m+n$ for rectangular matrices, $n+1$ for symmetric and $n-1$ for skew-symmetric and V is the Euclidean volume of the domain D; for rectangular matrices, for example [6],

$$
\begin{equation*}
V=\frac{\pi^{m n} \prod_{i=1}^{m-1} j!\prod_{k=1}^{n-1} k!}{\prod_{i=1}^{m+n-1} i!} \tag{1.2}
\end{equation*}
$$

The kernel function of the domain D has all the usual properties, including the reproducing property (compare (2.6)).

Received March 8, 1952.

