CONGRUENCES FOR THE MENAGE POLYNOMIALS

By L. Carlitz

1. Introduction. In a recent paper [2], Riordan showed that the generalized menage numbers $u_{n, r}$ satisfy the recurrence

$$
\begin{equation*}
n!=\sum_{k=0}^{n}\binom{2 n}{k}(1-t)^{k} U_{n-k}(t), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{n}=U_{n}(t)=\sum_{r=0}^{n} u_{n, r} t^{r} \tag{1.2}
\end{equation*}
$$

Making use of (1.1), he proved that U_{n} satisfies the congruence

$$
\begin{equation*}
U_{p^{2}+n} \equiv\left(t^{p^{2}}-1\right) U_{n} \quad(\bmod p) \tag{1.3}
\end{equation*}
$$

where p is a prime >2.
In the present note we prove the stronger result

$$
\begin{equation*}
U_{m^{2}+n} \equiv(t-1)^{m^{2}} U_{n} \quad(\bmod m), \tag{1.4}
\end{equation*}
$$

where m is an arbitrary integer ≥ 2. In place of (1.1) we make use of the formulas [1; 121]

$$
\begin{equation*}
U_{n}=n W_{n-1}+2(t-1)^{n}=W_{n}-(t-1)^{2} W_{n-2} \quad(n>0) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{n}=n W_{n-1}+(t-1)^{2} W_{n-2}+2(t-1)^{n} \quad(n>0) \tag{1.6}
\end{equation*}
$$

which is a consequence of (1.5). Here $W_{n}=W_{n}(t)$ is a polynomial which may be defined by

$$
W_{n}(t)=\sum_{k=0}^{n}\binom{2 n,-k+1}{k}(n-k)!(t-1)^{k} .
$$

(Following a suggestion of Riordan, we write $V_{n}(t), W_{n}(t)$ in place of the $H_{n}(t), I_{n}(t)$ of [1]. This is in agreement with the notation of [2].)
2. We first establish the congruence

$$
\begin{equation*}
W_{m+k-1}-(t-1)^{2 k} W_{m-k-1} \equiv 2(t-1)^{m} W_{k-1} \tag{2.1}
\end{equation*}
$$

for $1 \leq k \leq m-1$; all congruences are modulo m (except as noted).
If we take $m=n$ in (1.6) we get

$$
\begin{equation*}
W_{m} \equiv(t-1)^{2} W_{m-2}+2(t-1)^{m} \quad\left(\text { or } U_{m} \equiv 2(t-1)^{m}\right) \tag{2.2}
\end{equation*}
$$

Received April 12, 1952.

