GENERALIZED CONVEX SETS IN THE PLANE

By Militon Drandell

1. Introduction. This paper is an outgrowth of the consideration of generalized convex functions as presented by E. F. Beckenbach [1] and E. F. Beckenbach and R. H. Bing [2]. Later M. M. Peixoto [5] combined Beckenbach's generalization with the convexity of a plane set of points. The present paper deals with the convexity of a plane set of points with respect to a more general family of curves $\{C\}$ than that used by Peixoto. Our investigations are almost entirely nonmetric in character, in distinction from those of H. Busemann [3], pp. 84-94, relative to the establishment of a metric for the family $\{C\}$. J. W. Green and W. Gustin [4] have considered an interesting generalization of convexity which will be discussed at the end of this paper.
2. Notation and definition of the family $\{C\}$. We shall consider a family of curves $\{C\}$ in the complex plane, or on the Riemann sphere, which satisfy the following conditions:
(1) Each $C \varepsilon\{C\}$ is a closed Jordan curve which passes through the point ω at infinity, or through the north pole of the Riemann sphere.
(2) There is a unique member of the family $\{C\}$ which passes through two finite points in the complex plane.

Herein lower case letters will always denote finite points in the complex plane. If p_{i}, p_{i} are any two points on $C_{k} \varepsilon\{C\}$, then briefly $A\left(C_{k} ; p_{i}, p_{i}\right)$ will denote the open arc on C_{k} from p_{i} to p_{i} which does not contain the point ω. The notation $A\left(C_{k} ; p_{i}, \omega\right)$ will denote either of the open arcs of C_{k} from p_{i} to ω, and a bar over the A will denote the closure of this open arc. We shall also consider the members of $\{C\}$ to be point sets.

We shall say that a curve $C \varepsilon\{C\}$ is a bounding curve of a point set E provided all points of E lie in one of the two open regions determined by C, and that C is a supporting curve of E provided E lies in one of the two closed regions determined by C and at least one point of E lies on C. An open two-dimensional sphere with center at p_{0} and finite radius will be denoted by $S\left(p_{0}, \delta\right)$ or at times briefly by S.
3. The family $\{C\}$. The following lemma follows from the theorem of Jordan.

Lemma 1. Let C_{1} and C_{2} be two distinct members of the family $\{C\}$ such that C_{1} and C_{2} pass thru the point p_{0}. Then C_{2} does not lie entirely in the closure of one of the regions of the plane determined by C_{1}.

Received January 9, 1952. The author gratefully acknowledges his indebtedness to Professors E. F. Beckenbach and J. W. Green for their help in the preparation of this paper.

