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1. Introduction. The object of this paper is to study Lie algebras whose under-
lying vector spaces need not be finite dimensional. Under suitable restrictions
on the Lie algebras we will prove extensions of the theorems of Engel, Lie, and
Levi as follows: If every element of a Lie algebra is nilpotent then the algebra
is nilpotent. If a Lie algebra is solvable then its derived algebra is nilpotent.
A Lie algebra is the direct sum of its radical and a semisimple algebra. As special
results we will show that if in a Lie algebra every proper subalgebra can be
embedded in a maximal proper subalgebra which is an ideal then the algebra is
nilpotent; we will also prove an extension of the author’s tower theorem.
The restrictions we impose are the following.

(1) The Lie algebra L has a nil radical N such that N 0 and L/N is finite
dimensional.

Here, as usual, the nil radical refers to the join of all the nilpotent ideals of
L and we assume that N 0 for some integer k. It would actually be equiva-
lent to assume only the existence of a nilpotent ideal M such that L/M is finite
dimensional, since then the join of all the nilpotent ideals of L is the join of
only a finite number of them and hence is a nilpotent ideal.

(2) L is locally finite; that is, any finite number of elements of L can be embedded
in a finite subalgebra of L.

Sometimes we will need the following stronger condition.

(2’) L is uniformly locally finite; that is, the dimension of the subalgebra {11,
1,,} of L generated by 11 In is less than or equal to (n), where (n) depends
only on n.

2. Extensions of the theorems of Engel, Lie and Levi.

THEOREM 1. If L is a Lie algebra with nil radical N such that L/N is finite
dimensional, and if the adjoint mapping l* of every element of L is nilpotent then
L is nilpotent.

Proof. We must show that N L. If N L then, by Engel’s theorem,
L/N is nilpotent and hence has a non-zero center. Consequently there is an
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