APPROXIMATELY CONVEX FUNCTIONS

By John W. Green

1. Introduction. A novel generalization of convex function has been introduced by D. H. Hyers and S. M. Ulam [2]. A real valued function f defined on an n-dimensional convex set S is said to be ϵ-approximately convex, or more briefly, ϵ-convex, provided for every x, y in S and for every $\lambda, 0 \leq \lambda \leq 1$, it satisfies the inequality

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \epsilon+\lambda f(x)+(1-\lambda) f(y) \tag{1}
\end{equation*}
$$

Here and henceforth, the letters x, y, z and only these, with or without subscripts, will represent points or vectors in n-dimensional Euclidean space E. The positive number ϵ is fixed throughout the entire paper, and, indeed, could be replaced by 1 without any loss in generality. If ϵ were zero, this would be ordinary convexity. λ is always a number between 0 and 1 .

Hyers and Ulam proved a theorem which amounts to the following: If f in continuous and ϵ-convex in a convex domain S, there exists a convex function g such that in $S, g(x) \leq f(x) \leq g(x)+k_{n} \epsilon$, where $k_{n}=1+(n-1)(n+2) /$ $2(n+1)$. The constant k_{n} is the smallest possible one for $n=1,2$, but not beyond, as will appear later. In fact, k_{n} is of too great an order of magnitude for large n. In the following, we shall prove this theorem in a different manner, extending it to upper or lower semicontinuous functions, and obtain an improved value of k for $n \geq 3$. A slightly weaker theorem will be obtained for general discontinuous functions. In addition a number of miscellaneous properties of ϵ-convex functions will be obtained.
2. Continuity properties of ϵ-convex functions. In the following, S will be a convex open set in E, not necessarily bounded.

Theorem 1. If f is ϵ-convex on S, it is bounded above on each compact subset of S, and bounded below on each bounded subset of S.

The proof does not differ materially from that of the corresponding theorem for convex functions, and being very simple, will be omitted.

Theorem 2. The oscillation of f at any point in S does not exceed ϵ.
For simplicity, consider the oscillation at 0 , where we may assume that lim $\inf _{x \rightarrow 0} f(x)=0$ without loss of generality. (By lim $\inf _{x \rightarrow 0} f(x)$ we mean lim $\inf _{R \rightarrow 0 ;|x|<R} f(x)$, and similarly for $\lim \sup _{x \rightarrow 0} f(x)$.) If the theorem is false, there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ tending to 0 and such that $\lim f\left(x_{n}\right)=0$, $\lim f\left(y_{n}\right)=\alpha>\epsilon$. Let K be the sphere $|x|=a$, where $|x|$ is the length of

Received February 18, 1952.

