ELEMENTARY DIVISORS OF CERTAIN MATRICES

By W. V. Parker and B. E. Mitchell

In a recent paper Flanders [1] proved that the elementary divisors of $A B$ and of $B A$ are identical except for those corresponding to the characteristic root zero. He also showed that for N nilpotent and such that $N A=0$, the matrices $A B+N$ and $A B$ have the same elementary divisors except for those corresponding to the characteristic root zero.

In this note we establish a similar theorem and show how both the above results are obtained from it.

Theorem 1. Let P and Q be two $n \times n$ matrices such that $P^{s}=Q P^{s-1}$ and $Q^{t}=P Q^{t-1}$. Then P and Q have the same elementary divisors except for those corresponding to the chracteristic root zero.

We observe that $P^{s-1}(\lambda I-P)=\left(\lambda P^{s-1}-P^{s}\right)=(\lambda I-Q) P^{s-1}$ and, consequently,

$$
\begin{equation*}
P^{s-1}(\lambda I-P)^{k}=(\lambda I-Q)^{k} P^{s-1} \tag{1}
\end{equation*}
$$

for all positive integers k. Similarly,

$$
\begin{equation*}
Q^{t-1}(\lambda I-Q)^{k}=(\lambda I-P)^{k} Q^{t-1} \tag{2}
\end{equation*}
$$

Suppose that $\lambda \neq 0$ is a characteristic root of P and that $\xi \neq 0$ is a vector such that

$$
\begin{equation*}
(\lambda I-P)^{k} \xi=0 \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
P^{s-1}(\lambda I-P)^{k} \xi=(\lambda I-Q)^{k} P^{s-1} \xi=0 \tag{4}
\end{equation*}
$$

If $P^{u} \xi=0$, then from (3) $\lambda^{k} P^{u-1} \xi=0$ and hence $P^{u-1} \xi=0$. Since $\xi \neq 0$ it follows that $P^{s-1} \xi \neq 0$. From (4) it follows that λ is a characteristic root of Q and that the nullity of $(\lambda I-P)^{k}$ does not exceed the nullity of $(\lambda I-Q)^{k}$. If $\eta \neq 0$ is any vector such that $(\lambda I-Q)^{k} \eta=0$, then in a similar manner it follows that $(\lambda I-P)^{k} Q^{t-1} \eta=0$, where $Q^{t-1} \eta \neq 0$. Hence the nullity of $(\lambda I-Q)^{k}$ does not exceed the nullity of $(\lambda I-P)^{k}$. Therefore, for $\lambda \neq 0$, $(\lambda I-P)^{k}$ and $(\lambda I-Q)^{k}$ have the same nullity for every positive integer k. Thus the elementary divisors associated with the characteristic root $\lambda \neq 0$ are identical for the two matrices P and Q.

Let $N=P-Q$ be nilpotent of index t and such that $N Q=0$, then $(P-Q)^{s}=$ $(P-Q) P^{s-1}$. Hence $(P-Q) P^{t-1}=0$ or $P^{t}=Q P^{t-1}$ and from $N Q=$ $(P-Q) Q=0, Q^{2}=P Q$. Thus we have the

