ELEMENTARY DIVISORS OF CERTAIN MATRICES

BY W. V. PARKER AND B. E. MITCHELL

In a recent paper Flanders [1] proved that the elementary divisors of AB and of BA are identical except for those corresponding to the characteristic root zero. He also showed that for N nilpotent and such that NA = 0, the matrices AB + N and AB have the same elementary divisors except for those corresponding to the characteristic root zero.

In this note we establish a similar theorem and show how both the above results are obtained from it.

THEOREM 1. Let P and Q be two $n \times n$ matrices such that $P^* = QP^{*-1}$ and $Q^* = PQ^{*-1}$. Then P and Q have the same elementary divisors except for those corresponding to the chracteristic root zero.

We observe that $P^{s-1}(\lambda I - P) = (\lambda P^{s-1} - P^s) = (\lambda I - Q)P^{s-1}$ and, consequently,

(1)
$$P^{s-1}(\lambda I - P)^k = (\lambda I - Q)^k P^{s-1},$$

for all positive integers k. Similarly,

(2)
$$Q^{t-1}(\lambda I - Q)^k = (\lambda I - P)^k Q^{t-1}$$

Suppose that $\lambda \neq 0$ is a characteristic root of P and that $\xi \neq 0$ is a vector such that

(3)
$$(\lambda I - P)^k \xi = 0.$$

Then

(4)
$$P^{s-1}(\lambda I - P)^k \xi = (\lambda I - Q)^k P^{s-1} \xi = 0.$$

If $P^{u}\xi = 0$, then from (3) $\lambda^{k}P^{u-1}\xi = 0$ and hence $P^{u-1}\xi = 0$. Since $\xi \neq 0$ it follows that $P^{*-1}\xi \neq 0$. From (4) it follows that λ is a characteristic root of Qand that the nullity of $(\lambda I - P)^{k}$ does not exceed the nullity of $(\lambda I - Q)^{k}$. If $\eta \neq 0$ is any vector such that $(\lambda I - Q)^{k}\eta = 0$, then in a similar manner it follows that $(\lambda I - P)^{k}Q^{t-1}\eta = 0$, where $Q^{t-1}\eta \neq 0$. Hence the nullity of $(\lambda I - Q)^{k}$ does not exceed the nullity of $(\lambda I - P)^{k}$. Therefore, for $\lambda \neq 0$, $(\lambda I - P)^{k}$ and $(\lambda I - Q)^{k}$ have the same nullity for every positive integer k. Thus the elementary divisors associated with the characteristic root $\lambda \neq 0$ are identical for the two matrices P and Q.

Let N = P - Q be nilpotent of index t and such that NQ = 0, then $(P - Q)^{\bullet} = (P - Q)P^{\bullet-1}$. Hence $(P - Q)P^{t-1} = 0$ or $P^{t} = QP^{t-1}$ and from NQ = (P - Q)Q = 0, $Q^{2} = PQ$. Thus we have the

Received January 26, 1952.