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1. Introduction. In the usual notation the Bernoulli nd Euler polynomials
my be defined by means of

tet 2et

e’ 1 n B,,,(x), .. E,(x),

respectively. It is well known [2, Ch. 2] that for m odd 3, B(x) has the three
linear factors x, x , x 1; for m even 2, E(x) has the factors x, x 1;
for m odd, E(x) has the factor x . Beyond this there seems to be nothing
known about factorization of B(x) and E(x) relative to the rational field.

In the present note we collect a few fragmentary results in this direction.
Let p denote a prime 3. We show that B(_)(x) is irreducible for I m p;
also B(x) is irreducible for m 2" and m k(p 1)p’, 1 k ( p. In the
case of an odd index we show that B+(x)/x(x )(x 1), where 2m + 1
k(p 1) + 1, k p, if not itself irreducible has an irreducible factor of degree
2m+l-p.
For the Euler polynomials the situation is even more obscure. If p 3

(mod 4), then E(x)/(x ) is irreducible; however, for p 1 (mod 4), ve
can no longer make the same assertion. Indeed

E(x) (x )(x 2x x + 2x + ) ( )(x x- ),

so that repeated factors cannot be ruled out. We remark that

E(x) x(x )(x x );

thus E(x) and E(x) have a common non-trivial factor. We shall show that
E(x)/x(x 1) has an irreducible factor of degree p 1.
The Bernoulli number of order k is defined by means of

Ig follows ga B2 is a polynomial in of degree m. We shall show
B(,_/z is irreducible.
From ghe above ig appears ghag irredueibiligy quesgions concerning ghe

Bernoulli and Nuler polynomials are somewha similar go hose involving ghe
Legendre polynomials (see, for example, a reeeng paper by J. H. Wahab [4]).
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