NOTE ON IRREDUCIBILITY OF THE BERNOULLI AND EULER POLYNOMIALS

By L. Carlitz

1. Introduction. In the usual notation the Bernoulli and Euler polynomials may be defined by means of

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{m=0}^{\infty} \frac{t^{m}}{m!} B_{m}(x), \quad \frac{2 e^{x t}}{e^{t}+1}=\sum_{m=0}^{\infty} \frac{t^{m}}{m!} E_{m}(x)
$$

respectively. It is well known [2, Ch. 2] that for m odd $\geq 3, B_{m}(x)$ has the three linear factors $x, x-\frac{1}{2}, x-1$; for m even $\geq 2, E_{m}(x)$ has the factors $x, x-1$; for m odd, $E_{m}(x)$ has the factor $x-\frac{1}{2}$. Beyond this there seems to be nothing known about factorization of $B_{m}(x)$ and $E_{m}(x)$ relative to the rational field.

In the present note we collect a few fragmentary results in this direction. Let p denote a prime ≥ 3. We show that $B_{m(p-1)}(x)$ is irreducible for $1 \leq m \leq p$; also $B_{m}(x)$ is irreducible for $m=2^{r}$ and $m=k(p-1) p^{r}, 1 \leq k<p$. In the case of an odd index we show that $B_{2 m+1}(x) / x\left(x-\frac{1}{2}\right)(x-1)$, where $2 m+1=$ $k(p-1)+1, k \leq p$, if not itself irreducible has an irreducible factor of degree $\geq 2 m+1-p$.

For the Euler polynomials the situation is even more obscure. If $p \equiv 3$ $(\bmod 4)$, then $E_{\nu}(x) /\left(x-\frac{1}{2}\right)$ is irreducible; however, for $p \equiv 1(\bmod 4)$, we can no longer make the same assertion. Indeed

$$
E_{5}(x)=\left(x-\frac{1}{2}\right)\left(x^{4}-2 x^{3}-x^{2}+2 x+1\right)=\left(x-\frac{1}{2}\right)\left(x^{2}-x-1\right)^{2}
$$

so that repeated factors cannot be ruled out. We remark that

$$
E_{4}(x)=x(x-1)\left(x^{2}-x-1\right) ;
$$

thus $E_{4}(x)$ and $E_{5}(x)$ have a common non-trivial factor. We shall show that $E_{2 p}(x) / x(x-1)$ has an irreducible factor of degree $\geq p-1$.

The Bernoulli number of order k is defined by means of

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{k}=\sum_{m=0}^{\infty} B_{m}^{(k)} \frac{t^{m}}{m!} \tag{1.1}
\end{equation*}
$$

It follows that $B_{m}^{(x)}$ is a polynomial in x of degree m. We shall show that $B_{p-1}^{(x)} / x$ is irreducible.

From the above it appears that irreducibility questions concerning the Bernoulli and Euler polynomials are somewhat similar to those involving the Legendre polynomials (see, for example, a recent paper by J. H. Wahab [4]).

