NOTE ON IRREDUCIBILITY OF THE BERNOULLI AND EULER POLYNOMIALS

By L. CARLITZ

1. Introduction. In the usual notation the Bernoulli and Euler polynomials may be defined by means of

$$\frac{te^{x^{t}}}{e^{t}-1} = \sum_{m=0}^{\infty} \frac{t^{m}}{m!} B_{m}(x), \qquad \frac{2e^{x^{t}}}{e^{t}+1} = \sum_{m=0}^{\infty} \frac{t^{m}}{m!} E_{m}(x),$$

respectively. It is well known [2, Ch. 2] that for $m \text{ odd } \geq 3$, $B_m(x)$ has the three linear factors $x, x - \frac{1}{2}, x - 1$; for $m \text{ even } \geq 2$, $E_m(x)$ has the factors x, x - 1; for m odd, $E_m(x)$ has the factor $x - \frac{1}{2}$. Beyond this there seems to be nothing known about factorization of $B_m(x)$ and $E_m(x)$ relative to the rational field.

In the present note we collect a few fragmentary results in this direction. Let p denote a prime ≥ 3 . We show that $B_{m(p-1)}(x)$ is irreducible for $1 \leq m \leq p$; also $B_m(x)$ is irreducible for m = 2' and m = k(p - 1)p', $1 \leq k < p$. In the case of an odd index we show that $B_{2m+1}(x)/x(x - \frac{1}{2})(x - 1)$, where 2m + 1 = k(p - 1) + 1, $k \leq p$, if not itself irreducible has an irreducible factor of degree $\geq 2m + 1 - p$.

For the Euler polynomials the situation is even more obscure. If $p \equiv 3 \pmod{4}$, then $E_p(x)/(x - \frac{1}{2})$ is irreducible; however, for $p \equiv 1 \pmod{4}$, we can no longer make the same assertion. Indeed

$$E_{5}(x) = (x - \frac{1}{2})(x^{4} - 2x^{3} - x^{2} + 2x + 1) = (x - \frac{1}{2})(x^{2} - x - 1)^{2},$$

so that repeated factors cannot be ruled out. We remark that

$$E_4(x) = x(x - 1)(x^2 - x - 1);$$

thus $E_4(x)$ and $E_5(x)$ have a common non-trivial factor. We shall show that $E_{2p}(x)/x(x-1)$ has an irreducible factor of degree $\geq p-1$.

The Bernoulli number of order k is defined by means of

(1.1)
$$\left(\frac{t}{e^{t}-1}\right)^{k} = \sum_{m=0}^{\infty} B_{m}^{(k)} \frac{t^{m}}{m!}.$$

It follows that $B_m^{(x)}$ is a polynomial in x of degree m. We shall show that $B_{p-1}^{(x)}/x$ is irreducible.

From the above it appears that irreducibility questions concerning the Bernoulli and Euler polynomials are somewhat similar to those involving the Legendre polynomials (see, for example, a recent paper by J. H. Wahab [4]).

Received March 10, 1952.