SUMS OF PRIMITIVE ROOTS IN A FINITE FIELD

By L. Carlitz

1. In this paper we consider the following problem. Let α be an arbitrary number of the finite field $\operatorname{GF}\left(p^{n}\right)$, and let $\beta_{1}, \cdots, \beta_{r}$ denote primitive roots of the field. Then we seek the number of solutions of

$$
\begin{equation*}
\alpha=\beta_{1}+\cdots+\beta_{r}, \tag{1.1}
\end{equation*}
$$

where r is a fixed integer ≥ 2. The problem can be generalized as follows. Let $e_{i} \mid p^{n}-1, i=1, \cdots, r$, and let β_{i} denote a number belonging to the exponent e_{i}; we then seek the number of solutions of (1.1) subject to these conditions. A further generalization is obtained by introducing non-zero coefficients α_{1}, \cdots, α_{r}; we then require the number of solutions $N_{r}(\alpha)$ of

$$
\begin{equation*}
\alpha=\alpha_{1} \beta_{1}+\cdots+\alpha_{r} \beta_{r} . \tag{1.2}
\end{equation*}
$$

We shall show that for $e_{1} \leq \cdots \leq e_{r}, r \geq 3$,

$$
\begin{equation*}
N_{r}(\alpha)=\frac{\phi\left(e_{1}\right) \cdots \phi\left(e_{r}\right)}{p^{n}-1}+O\left(p^{n\left(\frac{1}{2}+\epsilon\right)} \phi\left(e_{3}\right) \cdots \phi\left(e_{r}\right)\right) \quad\left(p^{n} \rightarrow \infty\right), \tag{1.3}
\end{equation*}
$$

while for $r=2, \alpha \neq 0$,

$$
N_{2}(\alpha)=\frac{\phi\left(e_{1}\right) \phi\left(e_{2}\right)}{p^{n}-1}+O\left(p^{n\left(\frac{1}{2}+\epsilon\right)}\right)
$$

In particular for $n=1, e_{1}=\cdots=e_{r}=p-1$, (1.3) implies that the number of solutions of (1.2) in primitive roots $(\bmod p)$, where now α, α_{i} are integers $(\bmod p)$,

$$
\begin{equation*}
=\frac{\phi^{r}(p-1)}{p-1}+O\left(p^{r-\frac{3}{2}+\epsilon}\right) . \tag{1.4}
\end{equation*}
$$

In the next place we consider the equation

$$
\begin{equation*}
\alpha=\gamma_{1} \beta_{1}+\cdots+\gamma_{r} \beta_{r}+\delta_{1} \xi_{1}^{k_{1}}+\cdots+\delta_{s} \xi_{s}^{k_{s}} \tag{1.5}
\end{equation*}
$$

where $\gamma_{i} \delta_{i} \neq 0, e_{i}\left|p^{n}-1, k_{i}\right| p^{n}-1$; as for the unknowns β_{i}, ξ_{i}, it is required that β_{i} belongs to the exponent e_{i} while ξ_{i} is arbitrary. If $N_{r, s}(\alpha)$ denotes the number of solutions of (1.5) subject to these conditions we show that

$$
\begin{equation*}
N_{r, s}(\alpha)=\phi\left(e_{1}\right) \cdots \phi\left(e_{r}\right) p^{n(s-1)}+O\left(p^{n\left(s-\frac{1}{2}+a+\epsilon\right)} \phi\left(e_{2}\right) \cdots \phi\left(e_{r}\right),\right. \tag{1.6}
\end{equation*}
$$

provided $k_{i}=O\left(p^{n a}\right), a<\frac{1}{2}$; (1.6) is valid for all α and $r \geq 1, s \geq 1$ (except $\alpha=0$ when $r=s=1$).

