SUMS OF PRIMITIVE ROOTS IN A FINITE FIELD

By L. CARLITZ

1. In this paper we consider the following problem. Let α be an arbitrary number of the finite field $GF(p^n)$, and let β_1, \dots, β_r denote primitive roots of the field. Then we seek the number of solutions of

(1.1)
$$\alpha = \beta_1 + \cdots + \beta_r,$$

where r is a fixed integer ≥ 2 . The problem can be generalized as follows. Let $e_i|p^n - 1, i = 1, \dots, r$, and let β_i denote a number belonging to the exponent e_i ; we then seek the number of solutions of (1.1) subject to these conditions. A further generalization is obtained by introducing non-zero coefficients $\alpha_1, \dots, \alpha_r$; we then require the number of solutions $N_r(\alpha)$ of

(1.2)
$$\alpha = \alpha_1 \beta_1 + \cdots + \alpha_r \beta_r .$$

We shall show that for $e_1 \leq \cdots \leq e_r$, $r \geq 3$,

(1.3)
$$N_r(\alpha) = \frac{\phi(e_1)\cdots\phi(e_r)}{p^n-1} + O(p^{n(\frac{1}{2}+\epsilon)}\phi(e_3)\cdots\phi(e_r)) \qquad (p^n\to\infty),$$

while for $r = 2, \alpha \neq 0$,

$$N_{2}(\alpha) = \frac{\phi(e_{1})\phi(e_{2})}{p^{n}-1} + O(p^{n(\frac{1}{2}+\epsilon)}).$$

In particular for n = 1, $e_1 = \cdots = e_r = p - 1$, (1.3) implies that the number of solutions of (1.2) in primitive roots (mod p), where now α , α_i are integers (mod p),

(1.4)
$$= \frac{\phi^r(p-1)}{p-1} + O(p^{r-\frac{3}{2}+\epsilon}).$$

In the next place we consider the equation

(1.5)
$$\alpha = \gamma_1 \beta_1 + \cdots + \gamma_r \beta_r + \delta_1 \xi_1^{k_1} + \cdots + \delta_s \xi_s^{k_s},$$

where $\gamma_i \delta_i \neq 0$, $e_i | p^n - 1$, $k_i | p^n - 1$; as for the unknowns β_i , ξ_i , it is required that β_i belongs to the exponent e_i while ξ_i is arbitrary. If $N_{r,s}(\alpha)$ denotes the number of solutions of (1.5) subject to these conditions we show that

(1.6)
$$N_{r,s}(\alpha) = \phi(e_1) \cdots \phi(e_r) p^{n(s-1)} + O(p^{n(s-\frac{1}{2}+a+\epsilon)}\phi(e_2) \cdots \phi(e_r),$$

provided $k_i = O(p^{na})$, $a < \frac{1}{2}$; (1.6) is valid for all α and $r \ge 1$, $s \ge 1$ (except $\alpha = 0$ when r = s = 1).

Received January 7, 1952.