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A collection G of point sets is said to be upper semi-continuous (continuous)
provided that if h is the sequential limiting set of a sequence of elements of G
and g is an element of G which intersects h, then g contains (is)h. A collection
G of arcs is said to be equicontinuous provided that for every positive number
p, there exists a positive number q such that if x and y are two points of an arc
g of G at a distance apart less than q, then the diameter of the interval xy of
g is less than p.
The purpose of this paper is to prove the following theorem: If, in the plane,

G is a continuous and equicontinuous collection of mutually exclusive arcs and
their sum is closed and compact, then there exists a reversibly continuous trans-

formation of the plane into itself which carries each arc of G into a straight line
interval.
The notation d(x,y) will denote the distance between the points x and y and

cl(M) the point set M plus its boundary. If G is a collection of point sets, G*
will denote their sum. The notation {gn} denotes the sequence gl, g., g3,

THEOREM 1. Suppose G is a continuous and equicontinuous collection of mulally
exclusive arcs in a metric space and {g,,} is a sequence of arcs of G converging to
the arc g of G. Then if A and B are the end points of g, the end points of gs can be
labeled A,, and B,, in such a manner that {As ---+ A and Bs B.

THEOREM 2. If G is a continuous and equicontinuous collection of mutually
exclusive arcs in a metric space and G* is a compact continuum and K is the set
of all end points of the arcs of G, then K is closed and it is not the sum of three
mutually separated point sets.

With the aid of Theorem 1, it is easy to show that K is closed and that the
supposition that it is the sum of three mutually separated point sets leads to a
contradiction.

THEOREM 3. If G is a continuous collection of mutually exclusive arcs in the
plane and K is the set of all end points of the arcs of G, then every continuum lying in
K is a continuous curve.

LEMMA 3.1. IfM is a continuum in the plane which is not connected im kleinen,
there exist two mutually exclusive simple closed curves J1 and J2 a connected
domain D bounded by J J. a sequence {As} of points of J converging to a
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