THE PLEMELJ THEORY FOR THE CLASS Λ^* OF FUNCTIONS

By I. Edward Block

1. Introduction. Let f(z) be a complex-valued function defined and summable on the rectifiable Jordan curve Γ in the plane of the complex variable z. Define

$$\alpha_1(z) = \frac{1}{2\pi i} \int_{\Gamma} d\zeta \, \frac{f(\zeta)}{\zeta - z} \qquad (z \text{ interior to } \Gamma),$$

$$\alpha_2(z) = -\frac{1}{2\pi i} \int_{\Gamma} d\zeta \frac{f(\zeta)}{\zeta - z} \qquad (z \text{ exterior to } \Gamma),$$

where the direction of integration is to be taken in the counter-clockwise sense. Then $\alpha_1(z)$ and $\alpha_2(z)$ are analytic functions interior and exterior, respectively, to Γ .

Suppose further that arc and chord of Γ are infinitesimals of the same order, that is, for z_1 and z_2 on Γ , there exists a constant A (>1) such that

$$s(z_1, z_2) = \int_{\Gamma(z_1, z_2)} |d\zeta| \le A |z_1 - z_2|.$$

Here $\Gamma(z_1, z_2)$ denotes the shorter arc of Γ which connects z_1 and z_2 , or either arc if the two arcs have equal length. We shall continue this notation without further remark. Moreover, if z_0 is on Γ , then $\Gamma(|\zeta - z_0| > \epsilon)$ will denote that portion of Γ exterior to the circular neighborhood of radius ϵ about z_0 .

Plemelj [2], Privaloff [3], [4], and Davydov [1] have studied the behavior of $\alpha_1(z)$ and $\alpha_2(z)$ as z approaches Γ , and they have obtained the following results. On curves Γ with the above properties, let f(z) satisfy a Lipschitz condition of order α , $0 < \alpha < 1$. That is, if z_1 and z_2 are arbitrary points on Γ ,

$$| f(z_1) - f(z_2) | \leq K | z_1 - z_2 |^{\alpha},$$

where K is a constant independent of z_1 and z_2 . If s denotes arc length from a fixed reference point of Γ to a point z, define $F(s) \equiv f(z)$. Since arcs and chords are infinitesimals of the same order, the Lipschitz condition for f(z) is equivalent to the Lipschitz condition

$$|F(s_1) - F(s_2)| \leq K_1 |s_1 - s_2|^{\alpha}$$

with K_1 a suitably chosen constant. Then it is proved that the functions $\alpha_1(z)$, $\alpha_2(z)$ approach uniformly certain boundary functions $f_1(z)$, $f_2(z)$ as z approaches Γ . The functions $f_1(z)$ and $f_2(z)$, defined on Γ , satisfy a Lipschitz

Received February 1, 1952. This work was supported by the Office of Naval Research through the contract N5-ori-07634 with Harvard University. The author wishes to express his gratitude to Professor J. L. Walsh for the suggestion of the problem and for his many valuable criticisms.