THE PLEMELJ THEORY FOR THE CLASS Λ^{*} OF FUNCTIONS

By I. Edward Block

1. Introduction. Let $f(z)$ be a complex-valued function defined and summable on the rectifiable Jordan curve Γ in the plane of the complex variable z. Define

$$
\begin{array}{ll}
\alpha_{1}(z)=\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \frac{f(\zeta)}{\zeta-z} & (z \text { interior to } \Gamma), \\
\alpha_{2}(z)=-\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \frac{f(\zeta)}{\zeta-z} & (z \text { exterior to } \Gamma),
\end{array}
$$

where the direction of integration is to be taken in the counter-clockwise sense. Then $\alpha_{1}(z)$ and $\alpha_{2}(z)$ are analytic functions interior and exterior, respectively, to Γ.

Suppose further that arc and chord of Γ are infinitesimals of the same order, that is, for z_{1} and z_{2} on Γ, there exists a constant $A(>1)$ such that

$$
s\left(z_{1}, z_{2}\right)=\int_{\Gamma\left(z_{1}, z_{2}\right)}|d \zeta| \leq A\left|z_{1}-z_{2}\right|
$$

Here $\Gamma\left(z_{1}, z_{2}\right)$ denotes the shorter arc of Γ which connects z_{1} and z_{2}, or either arc if the two arcs have equal length. We shall continue this notation without further remark. Moreover, if z_{0} is on Γ, then $\Gamma\left(\left|\zeta-z_{0}\right|>\epsilon\right)$ will denote that portion of Γ exterior to the circular neighborhood of radius ϵ about z_{0}.

Plemelj [2], Privaloff [3], [4], and Davydov [1] have studied the behavior of $\alpha_{1}(z)$ and $\alpha_{2}(z)$ as z approaches Γ, and they have obtained the following results. On curves Γ with the above properties, let $f(z)$ satisfy a Lipschitz condition of order $\alpha, 0<\alpha<1$. That is, if z_{1} and z_{2} are arbitrary points on Γ,

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq K\left|z_{1}-z_{2}\right|^{\alpha}
$$

where K is a constant independent of z_{1} and z_{2}. If s denotes arc length from a fixed reference point of Γ to a point z, define $F(s) \equiv f(z)$. Since arcs and chords are infinitesimals of the same order, the Lipschitz condition for $f(z)$ is equivalent to the Lipschitz condition

$$
\left|F\left(s_{1}\right)-F\left(s_{2}\right)\right| \leq K_{1}\left|s_{1}-s_{2}\right|^{\alpha}
$$

with K_{1} a suitably chosen constant. Then it is proved that the functions $\alpha_{1}(z), \alpha_{2}(z)$ approach uniformly certain boundary functions $f_{1}(z), f_{2}(z)$ as z approaches Γ. The functions $f_{1}(z)$ and $f_{2}(z)$, defined on Γ, satisfy a Lipschitz

Received February 1, 1952. This work was supported by the Office of Naval Research through the contract N5-ori-07634 with Harvard University. The author wishes to express his gratitude to Professor J. L. Walsh for the suggestion of the problem and for his many valuable criticisms.

