CONGRUENCES FOR THE COEFFICIENTS OF HYPERELLIPTIC AND RELATED FUNCTIONS

By L. Carlitz

1. Introduction. In a previous paper [2] the writer considered the coefficients of the Jacobi elliptic function

$$
\begin{equation*}
f(x)=\operatorname{sn}\left(x, k^{2}\right)=\sum_{m=1}^{\infty} \frac{a_{m} x_{m}}{m!}, \tag{1.1}
\end{equation*}
$$

where the rational number $l=k^{2}$ is integral $(\bmod p), p$ an odd prime, and proved

$$
\sum_{i=0}^{r}(-1)^{r-i}\left(\begin{array}{l}
r \tag{1.2}\\
i
\end{array} a_{p}^{r-i} a_{m+i(p-1)} \equiv 0 \quad\left(\bmod p^{r}\right)\right.
$$

for $m \geq r \geq 1$. The question was raised there whether like results hold in the hyperelliptic case, for example for the function $g(x)=\sum_{1}^{\infty} c_{m} x^{m} / m$! satisfying

$$
\begin{equation*}
g^{\prime 2}(x)=1+A_{1} g(x)+\cdots+A_{6} g^{6}(x) \tag{1.3}
\end{equation*}
$$

where A_{1}, \cdots, A_{6} are integral $(\bmod p)$. The method of [2] apparently fails for the following reason. In the case of (1.1) we find that $D^{p-1} f$, where D denotes $d / d x$, is a polynomial in f of degree p, and by means of this and some previous results it is shown that

$$
\begin{equation*}
\left(D^{p}-a_{p} D\right) f=p \sum_{i=0}^{\infty} d_{i} f^{i} \tag{1.4}
\end{equation*}
$$

where the d_{i} are integral ($\bmod p$); (1.2) follows fairly easily from (1.4). Now for a function satisfying (1.3), we can only assert that $D^{p-1} g$ is a polynomial in g of degree $\leq 2 p-1$, and it does not seem possible to prove a result like (1.4).

The method of [2] can however be modified to apply to the hyperelliptic case and more generally to the class of functions $g(x)=\sum_{1}^{\infty} c_{m} x^{m} / m$! such that the inverse function is of the form $\sum_{1}^{\infty} e_{m} x_{m} / m$, where the c_{m}, e_{m} are integral $(\bmod p)$ and $c_{1}=e_{1}=1$. (This is the class of functions for which a generalization of the Staudt-Clausen theorem has been proved [1]). We are however not able to prove (1.2) in the present case but only the weaker result

$$
\begin{equation*}
\sum_{i=0}^{r}(-1)^{r-i}\binom{r}{i}_{p}^{r-i} c_{m+i(p-1)} \equiv 0 \quad\left(\bmod p^{s}\right) \tag{1.5}
\end{equation*}
$$

where $s=\left[\frac{1}{2}(r+1)\right]$. A formula similar to (1.5) also holds for the coefficients of $g^{\lambda}(x)$ (see (3.8) below).

In the next place, let

$$
\frac{x}{g(x)}=\sum_{m=0}^{\infty} \frac{\beta_{m} x^{m}}{m!}
$$

Received November 1, 1951.

