VARIATIONAL METHODS AND NON-OSCILLATION THEOREMS FOR SYSTEMS OF DIFFERENTIAL EQUATIONS

By Robert L. Sternberg

1. Introduction. The purpose of this paper is to establish by variational methods for certain systems of ordinary differential equations a number of non-oscillation theorems analogous to those recently given by E. Hille [5] and A. Wintner [13], [14] for a single linear second order differential equation. Each of the theorems established will be seen to be equivalently a theorem on the non-existence of conjugate points for a fixed end point problem of Lagrange in the calculus of variations.

The system of differential equations which we consider is introduced in §2 and is composed of n linear second order differential equations together with $m, 0 \leq m < n$, linear first order differential equations each with real coefficients; extensive use will be made of the fact that the equations considered are the accessory differential equations for a problem of Lagrange. In §3 two fundamental lemmas of a variational nature, which may be established with the aid of a result proved by W. T. Reid [11], are stated without proof and are used in §4 to establish a number of necessary and sufficient conditions for nonoscillation of the given system of differential equations for large x on an infinite interval, that is, for the non-existence of conjugate points for such x. Among the latter theorems there is a matrix analogue, applicable to our system when m is zero, of Hille's [5] necessary and sufficient integral equation for a single differential equation to be non-oscillatory for large x while in §5 generalizations of several "integral type" and "limit type" tests of Hille [5] and Wintner [13], [14] for non-oscillation are obtained.

Vector and matrix notation is used throughout; in particular, aside from a few obvious exceptions, we use capital italic letters for $n \times n$ square matrices, German or Greek letters for matrices which are not $n \times n$, and lower case letters for both scalars and vectors. We use the asterisk to denote the transpose of a vector or matrix and the prime to denote the derivative. By the statement that a matrix limit, $\lim_{x\to x_0} A(x)$, exists we mean that the limit of each of its elements exists and is finite; for brevity we write

$$\lim_{b\to\infty}\int_a^b A(x)\ dx = \int_a^\infty A(x)\ dx.$$

The symbols C, C', C'', and D' are employed in connection with vectors and matrices with the usual meanings of continuity and continuity, or piecewise

Received July 9, 1951; in revised form, January 21, 1952. Presented to the American Mathematical Society under a different title, December 26, 1951.