A MODIFIED RIEMANN-STIELTJES INTEGRAL

By E. J. McShane and T. A. Botts

The purpose of this note is to introduce a modified notion of RS (Reimann ${ }^{-}$ Stieltjes) integral possessing a combination of desirable properties not all possessed by the usual RS integral or by a generalized RS integral introduced by Pollard [8] and studied by Hildebrandt [5], Graves [4], and others. Specifically, these properties of the integral (of a bounded function f over a closed interval B of q-dimensional Euclidean space relative to an integrator function g) are the following.
(1) The existence of the integral has, when g is positively monotone, a characterization in terms of Darboux upper and lower integrals.
(2) The existence of the integral has, when g is positively monotone, a characterization in terms of zero content (relative to g) of oscillation sets of f.
(3) The existence of the integral has, when g is positively monotone, a characterization in terms of zero measure (relative to g) of the set of discontinuities of f.
(4) If f is integrable relative to g over each of a set of non-overlapping closed intervals B_{1}, \cdots, B_{n} whose union is B, then f is integrable relative to g over B and its integral over B is the sum of its integrals over the B_{i}.

Of these properties the usual RS integral possesses (2) and (3) only, while the Pollard integral possesses (1) and (4) only. Carmichael has established a theorem [2; Theorem III] which seems to imply (1) for the ordinary RS integral. But his upper and lower integrals are not bounds of upper and lower estimates; they are in fact limits of such estimates and may fail to exist. (Compare [4; 270]). It may be remarked that from the proof of our characterization theorem there can be extracted a proof of (2) and (3) for our modified integral which is considerably simpler than Bliss' proof [1] of the corresponding properties for the usual RS integral in one dimension.

1. Preliminary definitions. Let R^{α} denote Euclidean q-space. Let g be a function (throughout, all functions mentioned will be real-valued) on a set D in R^{a} containing the vertices of an interval I whose closure is

$$
\bar{I}=\underset{i=1}{\mathscr{Q}}\left\{x^{i}: \alpha^{i} \leq x^{i} \leq \beta^{i}\right\}
$$

We emphasize that when the word "interval" is used without a qualifying adjective, no restriction is implied; the interval may contain some, all, or none of its faces. For each of the points $v_{i}=\left(v_{i}^{1}, \cdots, v_{i}^{q}\right)\left(j=1, \cdots, 2^{q}\right)$ in which each v_{j}^{i} is either α^{i} or β^{i}, write $n\left(v_{i}\right)$ for the number of α^{i} s appearing as coordinates

Received October 3, 1951.

