THE BOUNDARY VALUES OF A CLASS OF MEROMORPHIC FUNCTIONS

BY A. J. LOHWATER

1. Introduction. R. Nevanlinna [7] was the first to point out the interest which lies in the class of functions f(z), analytic and bounded in |z| < 1, |f(z)| < 1, whose radial limit values $\lim_{r\to 1} f(re^{i\theta}) = f^*(e^{i\theta})$ have modulus 1 for almost all θ in $-\pi \leq \theta \leq \pi$. (In the sequel, a function with these properties will be called of class (A) in |z| < 1.) Following Nevanlinna's work, W. Seidel [10], and G. Hössjer and O. Frostman [4] have made a rather extensive study of functions of class (A) in |z| < 1. It was proved independently by Seidel and by Hössjer and Frostman, for example, that if a non-constant function of class (A) omits the value 0 in |z| < 1, then there exists at least one radius $\theta = \theta_0$ such that $\lim_{r\to 1} f(re^{i\theta_{\circ}}) = 0$. We are concerned in this paper, among other things, with extending this result to functions which are no longer bounded in |z| < 1. More precisely, we consider the class of functions which are meromorphic with a finite number of zeros and poles in |z| < 1 and whose modulus $|f(re^{i\theta})|$ tends to 1 as $r \to 1$ for almost all θ in $-\pi \leq \theta \leq \pi$. There is an important subclass of such functions which we shall consider whose radial limit values exist almost everywhere; it has been shown by Nevanlinna (see, for example, [6]) that if f(z) is meromorphic with bounded characteristic in |z| < 1, then the radial limit values $\lim_{r\to 1} f(re^{i\theta}) = f^*(e^{i\theta})$ exist for almost all θ in $-\pi \leq \theta \leq \pi$, so that for this subclass $|f^*(e^{i\theta})| = 1$ almost everywhere. We show (Theorem 2) that if f(z) is meromorphic of bounded characteristic with at most a finite number of zeros and poles in |z| < 1 and if $|f^*(e^{i\theta})| = 1$ almost everywhere, then, unless f(z) reduces identically to a rational function in |z| < 1. there exists at least one radius $\theta = \theta_0$ such that $f^*(e^{i\theta_0}) = 0$ or $f^*(e^{i\theta_0}) = \infty$. In the more general case that f(z) is not of bounded characteristic, we show (Theorem 5) that unless f(z) is a rational function, there exists a Jordan arc \mathfrak{L} terminating at a point $e^{i\theta_{\circ}}$ of |z| = 1 such that as $z \to e^{i\theta_{\circ}}$ along \mathfrak{L} , $f(z) \to 0$ or $f(z) \rightarrow \infty$. In proving Theorem 2, we obtain an interesting result for harmonic functions of bounded mean modulus.

The following definition will be of use in the sequel.

DEFINITION. A function f(z) which is analytic in |z| < 1 and whose modulus $|f(re^{i\theta})|$ has radial limit 1 as $r \to 1$ for almost all θ in $-\pi \leq \theta \leq \pi$ will be called of *class* (U) in |z| < 1. A function f(z) of class (U) which is of bounded characteristic in |z| < 1 will be called of *class* (B) in |z| < 1.

2. Harmonic functions and functions of class (B). It follows from the Nevanlinna theory of functions of bounded characteristic in |z| < 1 [6; 190] that a necessary and sufficient condition that a function f(z) be of class (B) in

Received October 22, 1951; the results of this paper form part of the author's doctoral dissertation written under the direction of Professor W. Seidel at the University of Rochester.