NEW CASES OF IRREDUCIBILITY FOR LEGENDRE POLYNOMIALS

By J. H. Wahab

1. Introduction. It is well known [2; Chapter 9], [10; Chapter 2] that the Legendre polynomial of degree n can be written in the form

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n}} \sum_{v=0}^{[\mid 3 n]}(-1)^{v}\binom{n}{v}\binom{2 n-2 v}{n-2 v} x^{n-2 v} \tag{1}
\end{equation*}
$$

For odd n there is a factor x and the polynomial $L_{n}(x)$ is introduced as follows

$$
\begin{array}{cc}
L_{n}(x)= \begin{cases}P_{n}(x) & (n \text { even }) \\
x^{-1} P_{n}(x) & (n \text { odd })\end{cases} \\
L_{n}(x)=\frac{1}{2^{n}} \sum_{v=0}^{m-\left[\frac{12 n]}{2}\right.}(-1)^{v}\binom{n}{v}\binom{2 n-2 v}{n-2 v} x^{2 m-2 v} . & \tag{3}
\end{array}
$$

Although it has been conjectured for many years that $L_{n}(x)$ for arbitrary n is irreducible in the field of rational numbers, this conjecture remains unproved.

In 1912, J. B. Holt [7] published his first paper concerning this problem. In this paper Holt proves $L_{n}(x)$ irreducible whenever n lies in the following ranges (in this paper, p denotes an odd prime).

$$
\begin{equation*}
2^{a} \leq n \leq 2^{a}+1, \quad p-2 \leq n \leq p+1, \quad 2 p-2 \leq n \leq 2 p-1 \tag{4}
\end{equation*}
$$

He further demonstrated that $L_{n}(x)$ has in any case an irreducible factor of degree greater than two-thirds of n. In his second paper [8], Holt attempted to extend the ranges of n for which $L_{n}(x)$ is irreducible to

$$
\begin{equation*}
p-4 \leq n \leq p+3, \quad 2 p-4 \leq n \leq 2 p-1 \tag{5}
\end{equation*}
$$

He was successful except for $p+2, p-3$, and $2 p-3$, in which cases he needed only to exclude the factors $a x^{2}+b$. He proved all of these inadmissible for arbitrary n except, oddly enough, a constant times $P_{2}(x)$. It was left for Hildegard Ille in 1924 to prove in her dissertation [9] that $L_{n}(x)$ is not divisible by $P_{2}(x)$. In addition she establishes lower bounds for the degree of any irreducible factor in certain special cases, the irreducibility of $P_{n}(x)$ if $n=(p-1) p^{k}$, and the impossibility that the factor of largest degree be another Legendre polynomial. She states without proof that $L_{n}(x)$ is irreducible for n equal to any of $(p-1) p^{k}+1,(p-1) p^{k}+2,(p-1) p^{k}+3$. Furthermore, she mentions without proof the following result of Schur, which attests that the Legendre polynomials are quite reducible modulo p.

Received July 23, 1951. The author is grateful to Professor Alfred T. Brauer for his guidance in the preparation of this paper.

