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1. Introduction. It is well known [2; Chapter 9], [10; Chapter 2] that the
Legendre polynomial of degree n can be written in the form

(1)
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For odd n there is a factor x and the polynomial L.(x) is introduced as follows

(2) L.(x)=tP.(x) (n even)

(,x- P.(x) (n odd)

(3) L.(x) (- 1)
9-0 \/\ 7 2]x

Although it has been conjectured for many years that L.(x) for arbitrary n is
irreducible in the field of rationM numbers, this conjecture remains unproved.

In 1912, J. B. Holt [7] published his first paper concerning this problem. In
this paper Holt proves L.(x) irreducible whenever n lies in the following ranges
(in this paper, p denotes an odd prime).

(4) 2"_ n_< 2-k 1, p--2_n<_p.-]-l, 2p--2_n_2p--1.

He further demonstrated that L.(x) has in any case an irreducible factor of
degree greater than two-thirds of n. In his second paper [8], Holt attempted
to extend the ranges of n for which L.(x) is irreducible to

(5) p 4

_
n

_
p-t- 3, 2p 4

_
n <_ 2p 1.

He was successful except for p - 2, p 3, and 2p 3, in which cases he needed
only to exclude the factors ax b. He proved all of these inadmissible for
arbitrary n except, oddly enough, a constant times P(x). It was left for
Hildegard Ille in 1924 to prove in her dissertation [9] that L.(x) is not divisible
by P(x). In addition she establishes lower bounds for the degree of any irre-
ducible factor in certain special cases, the irreducibility of P.(x) if n (p 1)p,
and the impossibility that the factor of largest degree be another Legendre
polynomial. She states without proof that L.(x) is irreducible for n equal to
any of (p 1)p + 1, (p 1)p - 2, (p 1)p -t- 3. Furthermore, she mentions
without proof the following result of Schur, which attests that the Legendre
polynomials are quite reducible modulo p.
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