ABEL TRANSFORMS OF TAUBERIAN SERIES AND ANALYTIC APPROXIMATION TO CURVES AND FUNCTIONS

By Ralph Palmer Agnew

1. Introduction. Let $z(t)(=x(t)+i y(t))$ be a continuous complex valued function of the real variable $t,-\infty<t<\infty$, having period L and having bounded variation over each period. Then, as t starts with any given value and increases over an interval of length L, the point $z(t)$ traverses once in the positive direction an oriented closed rectifiable curve C in the complex plane. We suppose that t represents arc length on C and hence that C has length L. This assumption, which we can express in the form

$$
\int_{0}^{x}|d z(t)|=x \quad(0 \leq x \leq L)
$$

must be kept constantly in mind; as t increases over an interval $a \leq t \leq b$, the point $z(t)$ moves along C, in the positive direction, the distance ($b-a$).

Let $\sum u_{n}$ be a series of complex terms satisfying the strong Tauberian condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|n u_{n}\right|=h>0 \tag{..1}
\end{equation*}
$$

and having partial sums $s_{n}=u_{0}+\cdots+u_{n}$ all lying on the curve C and progressing steadily along C in the positive direction as n increases. Let $\sigma(r)$ denote the Abel power series transform of $\sum u_{n}$ so that

$$
\begin{equation*}
\sigma(r)=(1-r) \sum_{k=0}^{\infty} r^{k} s_{k} \quad(0<r<1) \tag{1.2}
\end{equation*}
$$

It is our object to study the set of limit points of $\sigma(r)$, by which we mean the set of points ζ representable in the form $\lim \sigma\left(r_{n}\right)=\zeta$ where r_{n} is a sequence for which $0<r_{n}<1$ and $\lim r_{n}=1$. It turns out that this set of limit points is a curve C_{h} which is uniquely determined by C and the constant h in (1.1), being completely independent of the series used in its definition. We shall obtain equations and some of the properties of these curves C_{h}. In particular, we find that C_{h} is always an analytic curve and that, when h is near zero, C_{h} is an extraordinary analytic approximation to C .
2. Partial sums. Since (1.1) implies that $\left|s_{n}-s_{n-1}\right|=\left|u_{n}\right|=o(1)$ as: $n \rightarrow \infty$ and that $\sum\left|s_{n}-s_{n-1}\right|=\infty$, it follows from our hypotheses that the points s_{n} traverse the curve C over and over again as n increases. When m. and n are positive integers, let $d(m, n)$ denote the distance, which is to be

Received November 5, 1951.

