ABEL TRANSFORMS OF TAUBERIAN SERIES AND ANALYTIC APPROXIMATION TO CURVES AND FUNCTIONS

BY RALPH PALMER AGNEW

1. Introduction. Let z(t) (= x(t) + iy(t)) be a continuous complex valued function of the real variable $t, -\infty < t < \infty$, having period L and having bounded variation over each period. Then, as t starts with any given value and increases over an interval of length L, the point z(t) traverses once in the positive direction an oriented closed rectifiable curve C in the complex plane. We suppose that t represents arc length on C and hence that C has length L. This assumption, which we can express in the form

$$\int_0^x |dz(t)| = x \qquad (0 \le x \le L),$$

must be kept constantly in mind; as t increases over an interval $a \le t \le b$, the point z(t) moves along C, in the positive direction, the distance (b - a).

Let $\sum u_n$ be a series of complex terms satisfying the strong Tauberian condition

$$\lim_{n\to\infty} |nu_n| = h > 0$$

and having partial sums $s_n = u_0 + \cdots + u_n$ all lying on the curve C and progressing steadily along C in the positive direction as n increases. Let $\sigma(r)$ denote the Abel power series transform of $\sum u_n$ so that

(1.2)
$$\sigma(r) = (1 - r) \sum_{k=0}^{\infty} r^k s_k \qquad (0 < r < 1).$$

It is our object to study the set of limit points of $\sigma(r)$, by which we mean the set of points ζ representable in the form $\lim \sigma(r_n) = \zeta$ where r_n is a sequence for which $0 < r_n < 1$ and $\lim r_n = 1$. It turns out that this set of limit points is a curve C_h which is uniquely determined by C and the constant h in (1.1), being completely independent of the series used in its definition. We shall obtain equations and some of the properties of these curves C_h . In particular, we find that C_h is always an analytic curve and that, when h is near zero, C_h is an extraordinary analytic approximation to C.

2. Partial sums. Since (1.1) implies that $|s_n - s_{n-1}| = |u_n| = o(1)$ as $n \to \infty$ and that $\sum |s_n - s_{n-1}| = \infty$, it follows from our hypotheses that the points s_n traverse the curve *C* over and over again as *n* increases. When *m* and *n* are positive integers, let d(m, n) denote the distance, which is to be

Received November 5, 1951.