REPRESENTATION OF ARITHMETIC FUNCTIONS IN $G F\left[p^{n}, x\right]$ WITH VALUES IN AN ARBITRARY FIELD

By Joseph A. Silva

1. Let $G F\left[p^{n}, x\right]$ denote the set of polynomials in an indeterminate x with coefficients from a finite field $G F\left(p^{n}\right)$. By an arithmetic function f will be meant a single-valued function defined over $G F\left[p^{n}, x\right]$ with values $f(A)$ in a field \mathcal{F}. The sum of two functions $h=f+g$ is defined by $h(A)=f(A)+g(A)$. Instead of the ordinary product we use one of the Cauchy products called C_{3} multiplication [4]. Let r be a fixed positive integer. Then for two functions f and g the C_{3} product is defined by

$$
h(M)=\sum_{A+B=M} f(A) g(B) \quad(\operatorname{deg} M<r)
$$

where the sum extends over all polynomials A and B (including 0) of degree $<r$ such that $A+B=M$. For convenience we sometimes write this product as $h=f \cdot g$; when the dot is omitted, the ordinary product is understood. We define two functions f and g as equivalent (written $f \sim g$) if $f(A)=g(A)$ for all A for which $\operatorname{deg} A<r$; we shall usually replace the symbol \sim by $=$. It is evident that the set of functions with addition, multiplication, and equivalence defined as above form a commutative ring $\Omega=\mathbb{R}^{r}$ with unit element; the unit element is given by $\iota(0)=1, \iota(A)=0$ for $A \neq 0$.

It has been shown [2] that if \mathcal{F} is of characteristic zero and contains the p-th roots of unity, then there exists a set of $p^{n r}$ orthogonal (hence linearly independent) functions $\epsilon_{G H}$ such that an arbitrary function f in \mathcal{R} may be represented uniquely by

$$
f=\sum^{*} \alpha_{G H} \epsilon_{G H},
$$

where the $\alpha_{G H}$ are numbers of \mathfrak{F} and the asterisk indicates a summation over the $p^{n r}$ orthogonal functions $\epsilon_{G H}$.
The $\epsilon_{G H}$ are defined in the following manner. If $\alpha \varepsilon G F\left(p^{n}\right)$, we put $\alpha=$ $a_{1} \theta^{n-1}+\cdots+a_{n}$, where $a_{i} \varepsilon G F(p)$ and θ generates the $G F\left(p^{n}\right)$; we put $a_{1}=$ $t(\alpha)$. If H is a primary polynomial of degree h in $G F\left[p^{n}, x\right]$ and $A \equiv \alpha_{1} x^{h-1}+$ $\cdots+\alpha_{h}(\bmod H)$ we put

$$
\epsilon(A, H)=e^{2 \pi i t\left(\alpha_{1}\right) / p} .
$$

Now let $(G, H)=1$, then we define

$$
\boldsymbol{\epsilon}_{G H}(A)=\epsilon(G A, H) .
$$

It follows that \mathbb{R} is a direct sum of $p^{n r}$ fields \mathfrak{F}. Thus \mathbb{R} contains no nilpotent elements, and every element of \mathbb{R} which is not a divisor of zero has a unique inverse in \mathcal{R}.

Received May 30, 1951.

