THE \&-CLOSURE OF EIGENFUNCTIONS ASSOCIATED WITH SELF-ADJOINT BOUNDARY VALUE PROBLEMS

By Norman Levinson

By modifying slightly a procedure used by Kneser [2], [1; Chapter XI] in connection with certain self-adjoint boundary value problems for second order differential equations, a rather simple function-theoretic proof will be given for the closure in the space $\&$ (all Lebesgue integrable functions) of the eigenfunctions of a self-adjoint, n-th order, boundary value problem on a finite interval. (Earlier references to Cauchy, Poincaré and Stekloff are given in Kneser [2].)

Let D denote the set of all complex-valued functions $x=x(t)$ on a finite interval $a \leq t \leq b$ which have continuous ($n-1$)-th derivatives and with $x^{(n-1)}$ absolutely continuous. The linear differential operator L is defined for all $x \varepsilon D$ by

$$
\begin{equation*}
L(x)=p_{0} x^{(n)}+p_{1} x^{(n-1)}+\cdots+p_{n} x \tag{1.0}
\end{equation*}
$$

where the p_{i} are continuous complex-valued functions of t on $a \leq t \leq b$, and $\left|p_{0}(t)\right| \neq 0$ on $a \leq t \leq b$. Consider n linearly independent boundary conditions

$$
\begin{equation*}
U_{i}(x)=\sum_{i=1}^{n}\left(a_{i j} x^{(i-1)}(a)+b_{i j} x^{(i-1)}(b)\right) \quad(i=1, \cdots, n) \tag{1.1}
\end{equation*}
$$

where the $a_{i j}$ and $b_{i j}$ are constants. If the relations $U_{i}(x)=0$ hold for $i=1$, \cdots, n, the shorter notation $U(x)=0$ will be used. The boundary value problem consists in finding those λ for which

$$
\begin{equation*}
L(x)=\lambda x, \quad U(x)=0 \tag{1.2}
\end{equation*}
$$

have one or more solutions of class C^{n} on $a \leq t \leq b$. (From $L(x)=\lambda x$ it is immediate that any solution $x \in D$ is of class C^{n}.) Those values of λ for which (1.2) has solutions (not identically zero) are called eigenvalues and the solutions are called eigenfunctions.

If u, v are measurable functions of t and if the product $u \bar{v}$, where the bar denotes the complex conjugate, is integrable over $a<t<b$ then let

$$
(u, v)=\int_{a}^{b} u \bar{v} d t .
$$

Two functions u and v are said to be orthogonal if $(u, v)=0$. A function u is said to be normalized if $(u, u)=1$. The problem .(1.2) is called self-adjoint if for every $u, v \in D$ for which $U(u)=0$ and $U(v)=0$, the relation

$$
\begin{equation*}
(L(u), v)=(u, L(v)) \tag{1.3}
\end{equation*}
$$

Received September 6, 1951; this paper was written in the course of research sponsored in part by the Office of Naval Research.

