TWO THEOREMS ON SCHLICHT FUNCTIONS

By S. D. Bernardi

1. Introduction. Let (S) denote the class of functions $w=f(z)=\sum_{1}^{\infty} a_{n} z^{n}$, $a_{1}=1$, which are regular and schlicht for $|z|<1$. The most famous problem concerning such functions is whether $\left|a_{n}\right| \leq n, n=2,3, \cdots$, with equality for any n only for functions having the form $f(z)=z /\left(1-z e^{i \theta}\right)^{2}$. This is the so-called Bieberbach conjecture. It is relatively easy to prove that $\left|a_{2}\right| \leq 2$ and there are many proofs [2] of this result. There are only two essentially different proofs [6], [11] of the inequality $\left|a_{3}\right| \leq 3$, both proofs being based upon recently developed variational methods. No sharp upper bound is known for $n>3$, although it has been shown [5] that $\left|a_{n}\right|<e n$ and that [1] lim sup $(n \rightarrow \infty)\left|a_{n}\right| / n<e / 2$. There are only two subclasses of (S) for which it has been proven that $\left|a_{n}\right| \leq n$, namely, (a) when all a_{n} are real [5] and (b) when $f(z)$ maps $|z|<1$ onto a domain starlike with respect to $w=0$. The lowest upper bound to date for $\left|a_{4}\right|$ for functions of (S) has been found [4] to be $\left|a_{4}\right|<4.16$. It is proposed in $\S 2$ of this paper to establish

Theorem 1. Let $f(z) \subset(S)$, then $\left|a_{4}\right|<4.0891$.
Because of the laborious, although simple, calculations involved in the proof of Theorem 1, we omit those that are readily verifiable. A method of investigating the conjecture $\left|a_{4}\right| \leq 4$ has been devised by Schaeffer and Spencer [11]; considerable numerical work is involved and computations begun in the winter of 1946-47 are being at present carried out as part of a project sponsored by the office of Naval Research. No results have as yet been announced.

The basic concepts upon which we rely for the proof of Theorem 2 in §3 of this paper will now be stated [10]: Let $K\left(N^{\frac{1}{2}} i\right)$ be the complex quadratic extension generated over the rational field by a root of $x^{2}+N=0$, where $N \geq 1$ is a rational integer containing no square factor. If $-N \equiv 1(\bmod 4)$ the integers of $K\left(N^{\frac{1}{2}} i\right)$ are $\alpha=\frac{1}{2}\left(s+t N^{\frac{1}{2}} i\right)$, where s and t are both even or both odd rational integers. If $-N \equiv 2$ or $3(\bmod 4)$ the integers are $\alpha=s+t N^{\frac{1}{2}} i$, where s and t are rational integers. The units of $K\left(N^{\frac{1}{2}} i\right)$ are those integers whose norm $|\alpha|^{2}=1$. The only units of $K\left(N^{\frac{1}{2}} i\right)$ are ± 1 except for $N=1,3$ in which case the units are $\pm 1, \pm i$ and $\pm 1, \pm p, \pm p^{*}$ respectively, where $p=\frac{1}{2}\left(-1+3^{\frac{1}{2}} i\right)$ and p^{*} is the complex conjugate of p. The only fields $K\left(N^{\frac{1}{2}} i\right)$ in which norm $\alpha=|\alpha|^{2}=2$ are $K(i)$ and $K\left(2^{\frac{1}{i} i}\right)$. Similarly norm $\alpha=|\alpha|^{2}=3$ can occur only in $K\left(3^{\frac{1}{2}} i\right)$. There exists in every real quadratic realm $K\left(N^{\frac{1}{2}}\right)$ an infinite number of units η, and a unit $\epsilon>1$ such that every unit η of the realm has the form $\eta= \pm \epsilon^{k}$, where k is a positive or a negative rational integer or zero. We denote by $K(1)$ the field of rationals. Let $S\left(K\left(N^{\frac{1}{2}} i\right)\right)$ denote the class

Received August 6, 1951.

