A THEOREM ON CYCLIC MATRICES

By Joseph A. Silva

It is well known [1; 444] that if A is a cyclic matrix of order n; $A = || a_{j-i+1} ||$; $i, j = 1, 2, \dots, n$; $a_r = a_s$ for $r \equiv s \pmod{n}$, then its determinant is given by

(1)
$$d(A) = \prod_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i}^{j-1} a_{j},$$

where the α_i run through the *n*-th roots of unity.

The standard proof of (1) breaks down when the a_i belong to a field of characteristic $p, p \mid n$. In attempting to carry over this method to the general case the writer was led to the following Theorem 1. Theorem 2 below, which is an easy consequence of Theorem 1, generalizes (1).

THEOREM 1. Let $A = ||A_{i-i+1}||$; $i, j = 1, 2, \dots, n$; $A_r = A_s$ for $r \equiv s$ (mod n) be a cylic matrix of order n in the A_r , $r = 1, 2, \dots, n$. The A_r are square matrices of order $n_1 \geq 1$; the elements of A are indeterminates. Let p be a rational prime and put $n = p^t m, p \nmid m$. Then

$$d(A) = [d(D)]^{p^{t}} \pmod{p},$$

where $D = ||D_{i-i+1}||$; $i, j = 1, 2, \dots, m$; $D_r = D_s$ for $r \equiv s \pmod{m}$, is a cyclic matrix of order m in the D_r . The D_r are themselves matrices of order n_1 given by

$$D_r \equiv \sum_{s=0}^{p^{t-1}} A_{sm+r} \qquad (r = 1, 2, \cdots, m).$$

Proof. For t = 0 the theorem is obvious. Assume t > 0 and put $n = pm_1$. Partition A into p^2 square submatrices each of order m_1 in the A_r . Note that A is cyclic in these submatrices; in fact, we have $A = ||A'_{i-i+1}||$; $i, j = 1, 2, \cdots, p$, where the A'_r are square matrices of order m_1 in the A_r and $A'_r = A'_r$ for $r \equiv s \pmod{p}$. We now put

(2)
$$||C_{ij}|| = \left| \left| {j-1 \choose i-1} I \right| |\cdot||A'_{j-i+1}||\cdot| \left| {p-i \choose p-j} I \right| |$$
 $(i, j = 1, 2, \cdots, p),$

where $\binom{r}{s}$ denotes the binomial coefficient $r(r-1) \cdots (r-s+1)/s!$ and I is the unit matrix of order n_1m_1 . The C_{ij} will then be square matrices of order n_1m_1 given by

$$C_{ij} = \sum_{l=1}^{p} \sum_{k=1}^{p} {\binom{k-1}{i-1} \binom{p-l}{p-j}} A'_{l-k+1} \qquad (i, j = 1, 2, \cdots, p).$$

Received May 21, 1951.