A THEOREM ON CYCLIC MATRICES

By Joseph A. Silva

It is well known [$1 ; 444]$ that if A is a cyclic matrix of order $n ; A=\left\|a_{i-i+1}\right\|$; $i, j=1,2, \cdots, n ; a_{r}=a_{s}$ for $r \equiv s(\bmod n)$, then its determinant is given by

$$
\begin{equation*}
d(A)=\prod_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i}^{i-1} a_{i}, \tag{1}
\end{equation*}
$$

where the α_{i} run through the n-th roots of unity.
The standard proof of (1) breaks down when the a_{i} belong to a field of characteristic $p, p \mid n$. In attempting to carry over this method to the general case the writer was led to the following Theorem 1. Theorem 2 below, which is an easy consequence of Theorem 1, generalizes (1).

Theorem 1. Let $A=\left\|A_{i-i+1}\right\| ; i, j=1,2, \cdots, n ; A_{r}=A_{s}$ for $r \equiv s$ $(\bmod n)$ be a cylic matrix of order n in the $A_{r}, r=1,2, \cdots, n$. The A_{r} are square matrices of order $n_{1} \geq 1$; the elements of A are indeterminates. Let p be a rational prime and put $n=p^{t} m, p \nmid m$. Then

$$
d(A)=[d(D)]^{p^{t}} \quad(\bmod p)
$$

where $D=\left\|D_{i-i+1}\right\| ; i, j=1,2, \cdots, m ; D_{r}=D_{s}$ for $r \equiv s(\bmod m)$, is a cyclic matrix of order m in the D_{r}. The D_{r} are themselves matrices of order n_{1} given by

$$
D_{r} \equiv \sum_{s=0}^{p^{t-1}} A_{s m+r} \quad(r=1,2, \cdots, m)
$$

Proof. For $t=0$ the theorem is obvious. Assume $t>0$ and put $n=p m_{1}$. Partition A into p^{2} square submatrices each of order m_{1} in the A_{r}. Note that A is cyclic in these submatrices; in fact, we have $A=\left\|A_{i-i+1}^{\prime}\right\| ; i, j=1,2$, \cdots, p, where the A_{r}^{\prime} are square matrices of order m_{1} in the A_{r} and $A_{r}^{\prime}=A_{s}^{\prime}$ for $r \equiv s(\bmod p)$. We now put

$$
\begin{equation*}
\left\|C_{i i}\right\|=\left\|\binom{j-1}{i-1} I\right\| \cdot\left\|A_{j-i+1}^{\prime}\right\| \cdot\left\|\binom{p-i}{p-j} I\right\|(i, j=1,2, \cdots, p) \tag{2}
\end{equation*}
$$

where (${ }_{8}^{r}$) denotes the binomial coefficient $r(r-1) \cdots(r-s+1) / s$! and I is the unit matrix of order $n_{1} m_{1}$. The $C_{i j}$ will then be square matrices of order $n_{1} m_{1}$ given by

$$
C_{i j}=\sum_{l=1}^{p} \sum_{k=1}^{p}\binom{k-1}{i-1}\binom{p-l}{p-j} A_{l-k+1}^{\prime} \quad(i, j=1,2, \cdots, p)
$$

Received May 21, 1951.

