PRIME RINGS

By R. E. Johnson

This paper is the beginning of a projected study of the structure of prime rings, that is, of rings in which the zero ideal is prime. Fundamental in this study is the concept of a prime right ideal. A right ideal I of a ring R is called prime if $ab \subseteq I$ implies that $a \subseteq I$, a and b right ideals of R with $b \neq 0$. For every right ideal I of the ring R there is a unique minimal prime right ideal p(I) containing I. The mapping $I \rightarrow p(I)$ is a closure operation [9; 494] on the lattice of right ideals of R.

Let us denote by \mathfrak{A} the set of all right ideals of R and by \mathfrak{P} the set of all prime right ideals of R. It is assumed in the present paper that there exists a mapping $I \to I^*$ of \mathfrak{A} onto a subset \mathfrak{R} of \mathfrak{P} having the following seven properties.

$$(P1) I^* \supseteq I.$$

(P2)
$$I^{**} = I^*.$$

(P3) If
$$I \supseteq I'$$
, then $I^* \supseteq I'^*$

(P4)
$$0^* = 0.$$

(P5) If
$$I \cap I' = 0$$
, then $I^* \cap I'^* = 0$.

$$(P6) aI^* \subseteq (aI)^*.$$

From (P1)-(P3), we see that $I \to I^*$ is a closure operation on \mathfrak{A} . If we let $I^* = p(I)$, then the ring R of all $n \times n$ matrices over the integers is an example of a ring with properties (P1)-(P7).

Any admissible right *R*-module *M* has a closure operation $N \to N^*$ induced by \Re on the submodules of *M*. The main result of the paper is that \Re , the lattice of closed submodules of *M*, is isomorphic to the lattice of principal right ideals of a certain regular ring, the so-called extended centralizer of *R* over *M* [5]. This implies that *R* itself has a regular quotient ring *E* such that \Re is isomorphic to the lattice of principal right ideals of *E*.

1. Prime right ideals. An ideal S of a (non-zero) ring R is called *prime* [7] if $ab \subseteq S$ implies that $a \subseteq S$ or $b \subseteq S$, a and b ideals (or r-ideals; or l-ideals) of R. The ring R itself is called a *prime ring* [7; 830] if 0 is a prime ideal of R.

A right ideal I of R will be called a *prime right ideal* of R if and only if $\mathfrak{ab} \subseteq I$ implies that $\mathfrak{a} \subseteq I$, \mathfrak{a} and \mathfrak{b} r-ideals of R with $\mathfrak{b} \neq 0$. Left primeness can be defined analogously.

It is evident that no ideal $S \neq 0$ of R can be contained in a prime right ideal I different from R. For $RS \subseteq S \subseteq I$ implies that $R \subseteq I$. Hence the concept

Received July 23, 1951.