INTEGRABILITY OF TRIGONOMETRIC SERIES. I.

By R. P. Boas, Jr.

1. Let $\sum a_n$ be an absolutely convergent series of real numbers and

(1.1)
$$g(x) = \sum_{n=1}^{\infty} a_n \sin nx,$$

(1.2)
$$f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos nx.$$

We are concerned with the existence of the Cauchy limits

(1.3)
$$\int_{-0}^{} x^{-1}g(x) \, dx,$$

(1.4)
$$\int_{\to 0} x^{-1} f(x) \, dx.$$

We shall show that, in the first place, (1.3) always exists, but not necessarily as a Lebesgue integral (for a counterexample see Titchmarsh [3; 170-171]); of course (1.3) is a Lebesgue integral if $g(x) \ge 0$ in a neighborhood of 0. Second, since f(x) is continuous an obvious necessary condition for the existence of (1.4) is

$$f(0) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n = 0.$$

If f(0) = 0, we shall show that a necessary and sufficient condition for the existence of (1.4) is the convergence of

(1.5)
$$\sum_{n=1}^{\infty} n^{-1} \left(\frac{1}{2} a_0 + \sum_{k=1}^n a_k \right) = - \sum_{n=1}^{\infty} n^{-1} \sum_{k=n+1}^{\infty} a_k .$$

If the a_k are ultimately of one sign, this is equivalent to the convergence of $\sum a_k \log k$; it can be shown that in this case (1.4) is a Lebesgue integral.

Theorems of this kind are sometimes useful for showing that a given function cannot have an absolutely convergent Fourier series. Thus for example an odd function of the form $h(x) = -1/\log x + xp(x)$ near x = 0, where p(x) is an integrable function, cannot have an absolutely convergent Fourier series (as follows also from a result of Sz.-Nagy [2] if h(x) is concave and increasing).

Our theorems are equivalent to other theorems which deal, not with absolutely convergent Fourier series, but with formal trigonometric series satisfying

(1.6)
$$\sum_{k=1}^{\infty} |\Delta a_k| < \infty, \qquad a_k \to 0.$$

Received April 30, 1951.