PROJECTIVE DIFFERENTIAL INVARIANTS OF A CURVE OF A SURFACE

By P. O. Bell

Abstract

1. Introduction. Let S_{0} denote a general analytic surface in ordinary projective space and let C denote a curve of S_{0} which passes through a general one of its points x_{0}. This paper is devoted to the study of (I) the projective curvature and the projective torsion of C at x_{0}, (II) the projective first fundamental form of S_{0}, and (III) the projective curvature tensor of S_{0}. A new geometric characterization of each of the above named invariants is presented. In association with the projective curvature tensor and the projective first fundamental form, the projective total curvature of S_{0} is defined. Upon choosing the R-conjugate line to be the Euclidean normal to S_{0} at x_{0} and replacing the projective group by its subgroup of orthogonal transformations, the projective first fundamental form, the projective curvature tensor, and the projective total curvature of S_{0} actually become the corresponding metric quantities. Moreover, if the Fubini fundamental form is replaced by the first fundamental form in the characterization of the projective curvature of C, the geodesic curvature of C results. Finally, the covariant points are determined which will be called the R-centers of projective principal curvatures of S_{0} at x_{0} and the R-center of projective mean curvature of S_{0} at x_{0}. Again, these points become the corresponding metric points when the R-conjugate line is chosen to be the metric normal to S_{0} at x_{0}.

2. Differential invariants of a curve of a surface. Let S be referred to a reference tetrahedron ($x_{0}, x_{1}, x_{2}, x_{3}$) whose first three vertices are defined by the vector equations

$$
x_{0}=x, \quad x_{1}=\frac{\partial x}{\partial u^{1}}, \quad x_{2}=\frac{\partial x}{\partial u^{2}}
$$

the line l joining the points x_{1}, x_{2} being covariantly determined with respect to S at x. Let the fourth vertex be a geometrically determined point x_{3}. Under an arbitrary transformation of parameters

$$
\begin{equation*}
u^{\alpha}=u^{\alpha}\left(\bar{u}^{1}, \bar{u}^{2}\right) \tag{2.1}
\end{equation*}
$$

the vertices are transformed according to the relations

$$
\bar{x}_{p}\left(\bar{u}^{1}, \bar{u}^{2}\right)=x_{p}, \quad \bar{x}_{\beta}=x_{\alpha} \frac{\partial u^{\alpha}}{\partial \bar{u}^{\beta}} .
$$

Received April 23, 1951.

