SEPARATION IN NON-SEPARABLE SPACES

By Mary Ellen Estill

Axioms 0 and 1 of R. L. Moore's Foundations of Point Set Theory [1] are as follows.

Ахіом 0. Every region is a point set.
Aхıом 1. There exists a sequence $G_{1}, G_{2}, G_{3}, \cdots$ such that (1) for each n, G_{n} is a collection of regions covering S, (2) for each n, G_{n+1} is a subcollection of G_{n}, (3) if R is any region whatsoever, X is a point of R and Y is a point of R either identical with X or not, then there exists a natural number m such that if g is any region belonging to the collection G_{m} and containing X then \bar{g} is a subset of $(R-Y)+X$, (4) if $M_{1}, M_{2}, M_{3}, \cdots$ is a sequence of closed point sets such that, for each n, M_{n} contains M_{n+1} and, for each n, there exists a region g_{n} of the collection G_{n} such that M_{n} is a subset of \bar{g}_{n}, then there is at least one point common to all the point sets of the sequence $M_{1}, M_{2}, M_{3}, \cdots$.

If Axiom 1_{3} denotes Axiom 1 above with part (4) deleted, there does not exist a space, satisfying Axiom 1_{3}, which is a subspace of any space, satisfying all of Axiom 1, which is not separable and does not contain uncountably many mutually exclusive domains [2]. However, there does exist a space, satisfying Axioms 0 and 1_{3}, which is not separable and does not contain uncountably many mutually exclusive domains [3]. This example [3] strongly uses the fact that no region has a boundary point. It is easy to connect the points of this space without destroying the properties described, but the questions arise as to whether such a space could be locally connected and by what types of point sets could each two points of such a space be separated. This paper will answer some of these questions.

Theorem 1. There is a locally connected space, satisfying Axioms 0 and 1_{3}, which is not separable and does not contain uncountably many mutually exclusive domains.

Proof. For each positive integer x, let I_{x} denote the sequence of points whose rectangular coordinates are $(x, 1),\left(x, \frac{1}{2}\right),(x, 1 / 3), \cdots$. There is an uncountable well-ordered sequence β of rays such that (1) if Y is a ray of β there is a sequence $Y_{1}, Y_{2}, Y_{3}, \cdots$, where, for each i, Y_{i} belongs to I_{i}, and Y is made up of the points of the straight line intervals $Y_{1} Y_{2}, Y_{2} Y_{3}, Y_{3} Y_{4}, \cdots$, (2) if Z follows Y in β there is a positive integer n such that, for i greater than $n, Z \cdot I_{i}$ is below $Y \cdot I_{i}$, and (3) no term of β is preceded by uncountably many others.

An essential notion in the definition of point for the desired space will be the idea of a breakdown. A sensed pair (Y, e) is a breakdown of order i of the finite set

Received April 18, 1951; presented to the American Mathematical Society under a different title, April 28, 1951.

