SEPARATION IN NON-SEPARABLE SPACES

By MARY ELLEN ESTILL

Axioms 0 and 1 of R. L. Moore's Foundations of Point Set Theory [1] are as follows.

AXIOM 0. Every region is a point set.

AXIOM 1. There exists a sequence G_1, G_2, G_3, \cdots such that (1) for each n, G_n is a collection of regions covering S, (2) for each n, G_{n+1} is a subcollection of G_n , (3) if R is any region whatsoever, X is a point of R and Y is a point of R either identical with X or not, then there exists a natural number m such that if g is any region belonging to the collection G_m and containing X then \overline{g} is a subset of (R - Y) + X, (4) if M_1, M_2, M_3, \cdots is a sequence of closed point sets such that, for each n, M_n contains M_{n+1} and, for each n, there exists a region g_n of the collection G_n such that M_n is a subset of \overline{g}_n , then there is at least one point common to all the point sets of the sequence M_1, M_2, M_3, \cdots .

If Axiom 1_3 denotes Axiom 1 above with part (4) deleted, there does not exist a space, satisfying Axiom 1_3 , which is a subspace of any space, satisfying all of Axiom 1, which is not separable and does not contain uncountably many mutually exclusive domains [2]. However, there does exist a space, satisfying Axioms 0 and 1_3 , which is not separable and does not contain uncountably many mutually exclusive domains [3]. This example [3] strongly uses the fact that no region has a boundary point. It is easy to connect the points of this space without destroying the properties described, but the questions arise as to whether such a space could be locally connected and by what types of point sets could each two points of such a space be separated. This paper will answer some of these questions.

THEOREM 1. There is a locally connected space, satisfying Axioms 0 and 1_3 , which is not separable and does not contain uncountably many mutually exclusive domains.

Proof. For each positive integer x, let I_x denote the sequence of points whose rectangular coordinates are (x,1), $(x,\frac{1}{2})$, (x,1/3), \cdots . There is an uncountable well-ordered sequence β of rays such that (1) if Y is a ray of β there is a sequence Y_1 , Y_2 , Y_3 , \cdots , where, for each i, Y_i belongs to I_i , and Y is made up of the points of the straight line intervals Y_1Y_2 , Y_2Y_3 , Y_3Y_4 , \cdots , (2) if Z follows $Y \ln \beta$ there is a positive integer n such that, for i greater than n, $Z \cdot I_i$ is below $Y \cdot I_i$, and (3) no term of β is preceded by uncountably many others.

An essential notion in the definition of point for the desired space will be the idea of a breakdown. A sensed pair (Y,e) is a breakdown of order i of the finite set

Received April 18, 1951; presented to the American Mathematical Society under a different title, April 28, 1951.