COMPOSITIONS INVOLVING TERNARY CUBICS

By A. R. Richardson

This note deals with identities A, B between components of composition of ternary cubics expressible as determinants of 3^{2}-matrices, the elements being linear in indeterminates x, y, z over a commutative and associative ring R with a modulus I.

Notation. Let (α) denote a row matrix ($\alpha_{1}, \alpha_{2}, \alpha_{3}$); A(α) a matrix over R linear in (α); $a(\alpha)$ a cubic in (α), generally the determinant of $\mathbf{A}(\alpha) ; \mathbf{A}^{*}(\alpha)$ the adjoint of $\mathrm{A}(\alpha)$. The unit matrix is not written.

Definition. $f(x)$ permits composition in R if $f(x)=a(\alpha) \phi(\beta, \gamma)$, the (x) being polynomials over R in $(\alpha),(\beta),(\gamma)$. (This definition includes that of invariance.)

The method used is outlined in [4] and implies the following.
Lemma. If $(x) \mathbf{A}(\alpha)=(\alpha) \mathbf{F}(x)$ and if $(x)=(\beta) \mathbf{A}^{*}(\alpha)$, then $f(x)=a(\alpha) \phi(\beta, \alpha)$.
In the general case $\phi(\beta, \alpha)$ is too complicated for explicit expression here and two special cases are chosen as illustrations.

1. The binary cubic.

$$
\begin{gathered}
\mathbf{F}(x)=\left|\begin{array}{ccc}
a x+b y, c x+d y, & 0 \\
0, & x, & y \\
y, & 0, & x
\end{array}\right| ; \quad f(x)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3} ; \\
\mathbf{F}(x, y, z)=\left|\begin{array}{rrr}
a x+b y, c x+d y, & (a d-b c) z \\
a z, & x, & y-b z \\
y, & d z, & x-c z
\end{array}\right| ; \\
f(x, y, z)=f(x)+a d(a d-b c) z^{3}+a\left(b d+c^{2}\right) z^{2} x-2 a c x^{2} z \\
+d\left(a c+b^{2}\right) z^{2} y-2 b d z y^{2}-(b c+3 a d) x y z ; \\
b(\beta)=d^{2} \beta_{1}^{3}+a^{2} \beta_{2}^{3}+a d \beta_{3}^{3}+\left(c^{2}-2 b d\right) \beta_{1}^{2} \beta_{2}+a b \beta_{2}^{2} \beta_{3}+b d \beta_{3}^{2} \beta_{1} \\
\\
+\left(b^{2}-2 a c\right) \beta_{1} \beta_{2}^{2}+a c \beta_{2} \beta_{3}^{2}+c d \beta_{3} \beta_{1}^{2}+(b c-3 a d) \beta_{1} \beta_{2} \beta_{3}
\end{gathered}
$$

Received March 24, 1951.

