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Let x x2 xn denote the "original variables", i.e., the coordinates of
a point in an n-dimensional manifold Ln with an (asymmetric) linear connec-
tion. Then the components F. (xl xn) of this connection transform
according to [3; 327]

(1) F F -t-
0-2 0 Ox, 0-20 Oxx

From (1) we .get the transformation formula for the torsion tensor S of the Ln

(2) S Ox Oxa 0
0-2i Ok Ox’

It is well known [2; 105] that Ln permits the introduction of geodesic coordinate
systems if and only if the torsion tensor vanishes either locally or everywhere.
Indeed from F. 0 (in geodesic coordinates), the symmetry of the second
derivatives in the suffixes i and k, and (1), it follows that the connection F is
symmetric; thus from (2) Si 0 in this (and so in every) system.

After an affine parameter s has been chosen the geodesics of L. satisfy the
differential equations

(3) (x) ’’ + F.(x")’(x) O.

Denote the symmetric part of the connection F. by F(,), and take into account
the symmetry of the products (x")’(x) ’. Then we get from (3) and (2)

(x’)" + r’o(x)’(x) (x’)" + (ri.,) + z’.)(x)’(x’)

(4) (x’)" + r(.,)(x")’(x) 0,

(.) 1/2(ro + r0.),

because S.(x")’(x) vanishes as a consequence of the skew-symmetry of the
torsion tensor. This means that the geodesics of an Ln are independent of the
torsion [2; 97]. If we introduce geodesic coordinates with respect to F;(.) [2; 100],
then from (4), we get, locally in these coordinates, F.) 0, and thus (x) ’’ O.
Following common usage in theory of relativity we call such systems rest systems.
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