GEODESIC COORDINATES AND REST SYSTEMS FOR GENERAL LINEAR CONNECTIONS

By M. J. Pinl

Let x_1, x_2, \dots, x_n denote the "original variables", i.e., the coordinates of a point in an *n*-dimensional manifold L_n with an (asymmetric) linear connection. Then the components $\Gamma^{\lambda}_{\alpha\beta}(x_1, \dots, x_n)$ of this connection transform according to [3; 327]

(1)
$$\overline{\Gamma}_{ik}^{l} = \Gamma_{\alpha\beta}^{\lambda} \frac{\partial x_{\alpha}}{\partial \overline{x}_{i}} \frac{\partial x_{\beta}}{\partial \overline{x}_{k}} \frac{\partial \overline{x}_{l}}{\partial x_{\lambda}} + \frac{\partial^{2} x_{\lambda}}{\partial \overline{x}_{i} \partial \overline{x}_{k}} \frac{\partial \overline{x}_{l}}{\partial x_{\lambda}}.$$

From (1) we get the transformation formula for the torsion tensor $S^{\lambda}_{\alpha\beta}$ of the L_n :

(2)
$$\overline{S}_{ik}^{l} = S_{\alpha\beta}^{\lambda} \frac{\partial x_{\alpha}}{\partial \overline{x}_{i}} \frac{\partial x_{\beta}}{\partial \overline{x}_{k}} \frac{\partial \overline{x}_{i}}{\partial x_{\lambda}}, \qquad S_{\alpha\beta}^{\lambda} = -S_{\beta\alpha}^{\lambda} = \frac{1}{2} \left(\Gamma_{\alpha\beta}^{\lambda} - \Gamma_{\beta\alpha}^{\lambda} \right) = \Gamma_{1\alpha\beta}^{\lambda}.$$

It is well known [2; 105] that L_n permits the introduction of geodesic coordinate systems if and only if the torsion tensor vanishes either locally or everywhere. Indeed from $\Gamma_{\alpha\beta}^{\lambda} = 0$ (in geodesic coordinates), the symmetry of the second derivatives in the suffixes *i* and *k*, and (1), it follows that the connection $\overline{\Gamma}_{ik}^{l}$ is symmetric; thus from (2), $\overline{S}_{ik}^{l} = 0$ in this (and so in every) system.

After an affine parameter s has been chosen the geodesics of L_n satisfy the differential equations

(3)
$$(x^{i})^{\prime\prime} + \Gamma^{i}_{\alpha\beta}(x^{\alpha})^{\prime}(x^{\beta})^{\prime} = 0.$$

Denote the symmetric part of the connection $\Gamma_{\alpha\beta}^i$ by $\Gamma_{(\alpha\beta)}^i$, and take into account the symmetry of the products $(x^{\alpha})'(x^{\beta})'$. Then we get from (3) and (2)

(4)

$$(x^{i})^{\prime\prime} + \Gamma^{i}_{\alpha\beta}(x^{\alpha})^{\prime}(x^{\beta})^{\prime} = (x^{i})^{\prime\prime} + (\Gamma^{i}_{(\alpha\beta)} + S^{i}_{\alpha\beta})(x^{\alpha})^{\prime}(x^{\beta})^{\prime}$$

$$= (x^{i})^{\prime\prime} + \Gamma^{i}_{(\alpha\beta)}(x^{\alpha})^{\prime}(x^{\beta})^{\prime} = 0,$$

$$\Gamma^{i}_{(\alpha\beta)} = \frac{1}{2}(\Gamma^{i}_{\alpha\beta} + \Gamma^{i}_{\beta\alpha}),$$

because $S_{\alpha\beta}^i(x^{\alpha})'(x^{\beta})'$ vanishes as a consequence of the skew-symmetry of the torsion tensor. This means that the geodesics of an L_n are independent of the torsion [2; 97]. If we introduce geodesic coordinates with respect to $\Gamma_{(\alpha\beta)}^i$ [2; 100], then from (4), we get, locally in these coordinates, $\Gamma_{(\alpha\beta)}^i = 0$, and thus $(x^i)'' = 0$. Following common usage in theory of relativity we call such systems rest systems.

Received September 26, 1949.