
SECOND ORDER DETERMINANTS OF LEGENDRE POLYNOMIALS

BY GEORGE E. FORSYTHE

1. Introduction and summary of results. For each non-negative integer r
let Pr(x) be the Legendre polynomial of r-th degree on the interval (-1, 1),
normalized, as in [5; Chapter XV], so that Pr(1) 1. For integers n, h, k
such that

(1) n >__ O, / >_ h >_ 1,

we define the following function of the real variable x:

/(n, h, ;x)
P,(x) P+(x)

P,/k(x) P,/h+k(x)

When it is not specified otherwise, it will be assumed that n, h, k are integers
satisfying (1). When h / is an even [odd] integer, A is an even [odd] function
of x. Clearly (n, h, k; 1) 0.

DEFINITION. Let n, h, k be given. The determinant A A(n, h, k; x) is
said to have propertyTwhen0 < x < l implies that A < 0. (TheTisfor
Turn.)
The general purpose of this investigation is to see which of the determinants

A have property T. Turn discovered that/(n, 1, 1; x) has property T for all
n >_ 0, and Szeg5 gave several proofs of this in [3]. In 2 and 3 it will be shown
that /(n, 1, 2; x) and (2n 1, 2, 2; x) both have property T for all n _> 0.
The proofs involve applying SzegS’s first method of proof to /x, dA/dx, or
dA/dx in various subintervals of the interval (0, 1). The inequality for
A(2n 1, 2, 2; x) is shown in 3 to be equivalent to an inequality of the original
Turn type for the Jacobi polynomials po.)(x) in the notation of [4; Chapter 4].
On the other hand, the table on p. 362 summarizes the triples (n, h, /) for

which it is proved in 4 that A(n, h, k; x) fails to have property T. The Roman
numerals refer to the cases within 4.
The triples of the table have an asymptotic density of seven-eighths within the

class of triples (n, h, k) satisfying (1). One wonders whether A(n, 1, 1; x),
A(n, 1, 2; x), A(2n -t- 1, 2, 2; x) may be the only determinants of type A(n, h,/; x)
with property T.

In a related paper [1] dealing with determinants of higher orders, Beckenbach,
Seidel and Szsz have shown (as a special case of their Theorem 4) for all n,
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