SOME STUDIES ON CYCLIC DETERMINANTS

By Oystein Ore

A determinant is said to be cyclic when it has the form

$$
\begin{equation*}
\mathfrak{C}\left(a_{0}, \cdots, a_{n-1}\right)=\left|a_{i-i}\right| \quad(i, j=0, \cdots, n-1) \tag{1}
\end{equation*}
$$

where $a_{r}=a_{s}$ for $r \equiv s(\bmod n)$. These determinants appear in a number of questions in algebra and number theory and there exists a rather considerable literature on the subject. (See, for instance, Muir [3] and [4].) In the following we shall deduce various properties which I have been unable to find elsewhere.

1. Explicit form of the cyclic determinants. To determine the explicit form of the expansion of a cyclic determinant (1) we take as our starting point the well-known identity

$$
\begin{equation*}
\mathfrak{C}\left(a_{0}, \cdots, a_{n-1}\right)=\prod_{i=1}^{n}\left(a_{0}+a_{1} \alpha_{i}+a_{2} \alpha_{i}^{2}+\cdots+a_{n-1} \alpha_{i}^{n-1}\right) \tag{2}
\end{equation*}
$$

where the α_{i} run through the n-th roots of unity. When the multiplication in (2) is executed one finds

$$
\begin{equation*}
\mathfrak{C}\left(a_{0}, \cdots, a_{n-1}\right)=\sum \phi_{p_{1}} \cdots p_{r} a_{0}^{n-r} a_{p_{1}} \cdots a_{p_{r}} \tag{3}
\end{equation*}
$$

where the indices p_{i} belong to the set $1, \cdots, n-1$ and may take equal values. To each term

$$
\begin{equation*}
a_{0}^{n-r} a_{p_{1}} \cdots a_{p_{r}} \tag{4}
\end{equation*}
$$

there is associated a weight

$$
\begin{equation*}
P=p_{1}+\cdots+p_{r} \tag{5}
\end{equation*}
$$

Often it is convenient to write the term (4) in the slightly different form

$$
\begin{equation*}
a_{0}^{\nu_{0}} a_{1}^{\nu_{1}} \cdots a_{n-1}^{\nu_{n}-1} \tag{6}
\end{equation*}
$$

where $\nu_{0}=n-r$ and

$$
\begin{equation*}
\nu_{0}+\nu_{1}+\cdots+\nu_{n-1}=n, \quad P=\nu_{1}+2 \nu_{2}+\cdots+(n-1) \nu_{n-1} \tag{7}
\end{equation*}
$$

Our first problem is to determine the rational integral coefficients $\phi_{p_{1}} \cdots \nu$. which appear in the expansion (3). From (2) we conclude that they are symmetric functions of the n-th roots of unity

$$
\begin{equation*}
\phi_{p_{1}} \cdots p_{r}=\sum \alpha_{1}^{p_{1}} \alpha_{2}^{p_{1}} \cdots \alpha_{r}^{p_{r}} . \tag{8}
\end{equation*}
$$

Received October 1, 1949.

