A TOPOLOGICAL CHARACTERIZATION OF A CLASS OF AFFINE TRANSFORMATIONS

BY CHARLES J. TITUS

1. Introduction. Let the symbols $\{x_{\sigma}\}_m$ and $\{y_{\sigma}\}_m$ denote real-valued sequences of period $m, m \geq 2$; *i.e.*,

$$x_{\sigma+m} = x_{\sigma}, \quad y_{\sigma+m} = y_{\sigma} \quad (\sigma = 0, \pm 1, \pm 2, \cdots).$$

Any pair of such sequences defines in the *xy*-plane the sequence of points (x_{σ}, y_{σ}) ($\sigma = 1, 2, \dots, m$). A closed oriented polygon can be defined by these points as follows:

(a) construct the horizontal line segments with the end-points

$$(x_{\sigma}, y_{\sigma})$$
 and $(x_{\sigma+1}, y_{\sigma})$ $(\sigma = 1, 2, \cdots, m),$

(b) construct the vertical line segments with the end-points

$$(x_{\sigma+1}, y_{\sigma})$$
 and $(x_{\sigma+1}, y_{\sigma+1})$ $(\sigma = 1, 2, \cdots, m),$

(c) give the polygon the orientation induced by the indices.

A sequence of m points will be said to *determine* the closed oriented polygon described above. A closed oriented curve is said to be of *non-negative circulation* if the order, with respect to the curve, of every point not on the curve is non-negative [3].

Consider the transformation

(1)
$$y_{\sigma} = -\sum_{\rho=1}^{m} a_{\rho} x_{\sigma-\rho+1} ,$$

where the a_{ρ} are terms of an arbitrary real-valued sequence of period m, $\{a_{\rho}\}_m$. The transformation (1) maps a periodic sequence $\{x_{\sigma}\}_m$ into the periodic sequence $\{y_{\sigma}\}_m$. These two sequences, as previously described, define a sequence of points which in turn determine a closed oriented polygon. For convenience, it will be said that, given a sequence $\{x_{\sigma}\}_m$, the transformation (1) generates a polygon. The principal theorem can now be stated.

THEOREM. A necessary and sufficient condition that the transformation (1) generate only polygons of non-negative circulation for all sequences $\{x_{\sigma}\}_m$ is that there exist non-negative C_{ρ} , β_{ρ} and γ_{ρ} such that

$$a_{k+1} - a_k = \sum_{\rho=1}^{q} C_{\rho}(\beta_{\rho})^{m-k-1}(\gamma_{\rho})^{k-1}$$
 $(k = 1, 2, \cdots, m-1), q = \left[\frac{m}{2}\right].$

Received June 7, 1949.