A TOPOLOGICAL CHARACTERIZATION OF A CLASS OF AFFINE TRANSFORMATIONS

By Charles J. Titus

1. Introduction. Let the symbols $\left\{x_{\sigma}\right\}_{m}$ and $\left\{y_{\sigma}\right\}_{m}$ denote real-valued sequences of period $m, m \geq 2$; i.e.,

$$
x_{\sigma+m}=x_{\sigma}, \quad y_{\sigma+m}=y_{\sigma} \quad(\sigma=0, \pm 1, \pm 2, \cdots) .
$$

Any pair of such sequences defines in the $x y$-plane the sequence of points $\left(x_{\sigma}, y_{\sigma}\right)(\sigma=1,2, \cdots, m)$. A closed oriented polygon can be defined by these points as follows:
(a) construct the horizontal line segments with the end-points

$$
\left(x_{\sigma}, y_{\sigma}\right) \text { and }\left(x_{\sigma+1}, y_{\sigma}\right) \quad(\sigma=1,2, \cdots, m)
$$

(b) construct the vertical line segments with the end-points

$$
\left(x_{\sigma+1}, y_{\sigma}\right) \text { and }\left(x_{\sigma+1}, y_{\sigma+1}\right) \quad(\sigma=1,2, \cdots, m)
$$

(c) give the polygon the orientation induced by the indices.

A sequence of m points will be said to determine the closed oriented polygon described above. A closed oriented curve is said to be of non-negative circulation if the order, with respect to the curve, of every point not on the curve is nonnegative [3].

Consider the transformation

$$
\begin{equation*}
y_{\sigma}=-\sum_{\rho=1}^{m} a_{\rho} x_{\sigma-\rho+1} \tag{1}
\end{equation*}
$$

where the a_{ρ} are terms of an arbitrary real-valued sequence of period $m,\left\{a_{\rho}\right\}_{m}$. The transformation (1) maps a periodic sequence $\left\{x_{\sigma}\right\}_{m}$ into the periodic sequence $\left\{y_{\sigma}\right\}_{m}$. These two sequences, as previously described, define a sequence of points which in turn determine a closed oriented polygon. For convenience, it will be said that, given a sequence $\left\{x_{\sigma}\right\}_{m}$, the transformation (1) generates a polygon. The principal theorem can now be stated.

Theorem. A necessary and sufficient condition that the transformation (1) generate only polygons of non-negative circulation for all sequences $\left\{x_{\sigma}\right\}_{m}$ is that there exist non-negative C_{ρ}, β_{ρ} and γ_{ρ} such that

$$
a_{k+1}-a_{k}=\sum_{\rho=1}^{q} C_{\rho}\left(\beta_{\rho}\right)^{m-k-1}\left(\gamma_{\rho}\right)^{k-1} \quad(k=1,2, \cdots, m-1), q=\left[\frac{m}{2}\right] .
$$

Received June 7, 1949.

