A SIMPLIFIED PROOF OF THE EXPANSION THEOREM FOR SINGULAR SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

By Norman Levinson

1. We begin by a brief sketch of the approach we shall make to the problem. Consider the equation

$$
\begin{equation*}
\frac{d}{d x}\left(p(x) \frac{d y}{d x}\right)+(\lambda-q(x)) y=0 \tag{1.0}
\end{equation*}
$$

where $p(x), q(x)$ and $p^{\prime}(x)$ are real valued and continuous over the interval $0 \leq x<\infty$ and $p(x)>0$. Now consider a boundary value problem with let us say $y(0)=0$ and $y(b)=0$ for some large $b>0$. Let $y=\phi(x, \lambda)$ be the solution of (1.0) with $\phi(0, \lambda)=0, \phi^{\prime}(0, \lambda)=1$. By the classical Sturm-Liouville theorem we have an increasing sequence $\lambda_{b n}, n=0,1,2, \cdots$, of characteristic values such that $\phi\left(x, \lambda_{b n}\right)$ are the corresponding characteristic functions. Let $r_{b n}$ be the normalizing factor of $\phi\left(x, \lambda_{b n}\right)$. Let the function $f(x) \varepsilon L^{2}(0, A)$ and $f(x) \equiv 0, x>A$. Then if $b>A$ we have the completeness relation for the SturmLiouville functions over ($0, b$)

$$
\begin{equation*}
\int_{0}^{\infty}|f(x)|^{2} d x=\sum_{n=0}^{\infty}\left|\int_{0}^{\infty} f(x) \phi\left(x, \lambda_{b n}\right) d x\right|^{2} r_{b n}^{2} \tag{1.1}
\end{equation*}
$$

We define $\rho_{b}(u)$ as a monotone non-decreasing step-function which increases by $r_{b n}^{2}$ when u passes through $\lambda_{b n}$, is otherwise constant, and let us say at a point of discontinuity is defined by $\rho_{b}\left(\lambda_{b n}\right)=\rho_{b}\left(\lambda_{b m}-0\right)$. Moreover $\rho_{b}(0)=0$. Then (1.1) becomes

$$
\begin{equation*}
\int_{0}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|g(u)|^{2} d \rho_{b}(u) \tag{1.2}
\end{equation*}
$$

where

$$
g(u)=\int_{0}^{\infty} f(x) \phi(x, u) d x
$$

Now if as $b \rightarrow \infty$ we can show $\rho_{b}(u)$ tends to a limit $\rho(u)$, if $\left|\rho_{b}(u)\right|$ is uniformly dominated for large $|u|$, and if the right side of (1.2) converges uniformly with respect to b then we shall get from (1.2)

$$
\begin{equation*}
\int_{0}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|g(u)|^{2} d \rho(u) . \tag{1.3}
\end{equation*}
$$

Received May 9, 1949. The author is a John Simon Guggenheim Memorial Fellow on leave from the Massachusetts Institute of Technology.

