A SIMPLIFIED PROOF OF THE EXPANSION THEOREM FOR SINGULAR SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

BY NORMAN LEVINSON

1. We begin by a brief sketch of the approach we shall make to the problem. Consider the equation

(1.0)
$$\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right) + (\lambda - q(x))y = 0,$$

where p(x), q(x) and p'(x) are real valued and continuous over the interval $0 \le x < \infty$ and p(x) > 0. Now consider a boundary value problem with let us say y(0) = 0 and y(b) = 0 for some large b > 0. Let $y = \phi(x, \lambda)$ be the solution of (1.0) with $\phi(0, \lambda) = 0$, $\phi'(0, \lambda) = 1$. By the classical Sturm-Liouville theorem we have an increasing sequence λ_{bn} , $n = 0, 1, 2, \cdots$, of characteristic values such that $\phi(x, \lambda_{bn})$ are the corresponding characteristic functions. Let r_{bn} be the normalizing factor of $\phi(x, \lambda_{bn})$. Let the function $f(x) \in L^2(0, A)$ and $f(x) \equiv 0, x > A$. Then if b > A we have the completeness relation for the Sturm-Liouville functions over (0, b)

(1.1)
$$\int_0^\infty |f(x)|^2 dx = \sum_{n=0}^\infty |\int_0^\infty f(x)\phi(x, \lambda_{bn}) dx|^2 r_{bn}^2 dx$$

We define $\rho_b(u)$ as a monotone non-decreasing step-function which increases by r_{bn}^2 when u passes through λ_{bn} , is otherwise constant, and let us say at a point of discontinuity is defined by $\rho_b(\lambda_{bn}) = \rho_b(\lambda_{bm} - 0)$. Moreover $\rho_b(0) = 0$. Then (1.1) becomes

(1.2)
$$\int_0^\infty |f(x)|^2 dx = \int_{-\infty}^\infty |g(u)|^2 d\rho_b (u),$$

where

$$g(u) = \int_0^\infty f(x)\phi(x, u) \ dx.$$

Now if as $b \to \infty$ we can show $\rho_b(u)$ tends to a limit $\rho(u)$, if $|\rho_b(u)|$ is uniformly dominated for large |u|, and if the right side of (1.2) converges uniformly with respect to b then we shall get from (1.2)

(1.3)
$$\int_0^\infty |f(x)|^2 dx = \int_{-\infty}^\infty |g(u)|^2 d\rho(u).$$

Received May 9, 1949. The author is a John Simon Guggenheim Memorial Fellow on leave from the Massachusetts Institute of Technology.