A THEOREM ON QUARTIC POLYNOMIALS

By S. Verblunsky

1. In this note, we are concerned with necessary and sufficient conditions which must be satisfied by the coefficients of a real quartic polynomial $f(x)=$ $a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}$ in order that $f(x)>0$ if $x \geq 0$. We must have $a_{0}>0, a_{4}>0$. Write $x=c t$ where c is the positive number which satisfies $a_{0} c^{4}=a_{4}$. It suffices to consider the quartic $f(c t) / a_{4}$ for $t>0$. This quartic, however, has its first and last coefficients equal to 1 . We may therefore confine our attention to quartics

$$
\begin{equation*}
f(x)=x^{4}+a x^{3}+b x^{2}+c x+1 \quad(x>0) \tag{1}
\end{equation*}
$$

We define $M(b)=b^{2}+20 b-28-(b-6)|b-6|$, so that $M(b)=$ $32(b-2)$ if $b \geq 6,=2(b+2)^{2}$ if $b<6$, and $M(b) \geq 0$ for all b. It will appear that if $M(b) \geq 8 a c$, then $d=12+b^{2}-3 a c \geq 0$. We can then define a function n by the equation $3 n=6-b+d^{\frac{1}{3}}$. We shall see that $b+2 n-2 \geq 4$. Write $L=L(b)=(n-4)(b+2 n-2)^{\frac{1}{2}}-(a+c)$. The complete solution of our problem is given by the

Theorem. The polynomial (1) satisfies the condition

$$
\begin{equation*}
f(x)>0 \tag{2}
\end{equation*}
$$

in one of the following mutually exclusive cases, and only in such cases:
(i) $a>0, c>0, b+2+2(a c)^{\frac{1}{2}}>0$;
(ii) $a>0, c>0, b+2+2(a c)^{\frac{1}{2}} \leq 0, L<0$;
(iii) $a<0, c<0, L<0, M(b)>8 a c, b+2>0$;
(iv) $a c \leq 0, L<0$.
2. Let S denote the set of points whose rectangular co-ordinates (a, b, c) are such that the quartic (1) satisfies the condition (2). Let F denote the frontier of S. Given a, c, there is a uniquely determined number b_{0} such that, if $b>b_{0}$, then (a, b, c) is a point of S; if $b<b_{0}$, then the corresponding $f(x)$ takes negative values for some $x>0$; and if $b=b_{0}$, then the corresponding $f(x)$ is non-negative for $x>0$ and has a zero of even multiplicity for a positive value of x, say $x=t$. The number b_{0} is the unique number with the property that $\left(a, b_{0}, c\right)$ is a point of F. The corresponding $f(x)$ is of the form $(x-t)^{2}\left[\left(x-t^{-1}\right)^{2}+s x\right]$. The last factor must be non-negative for $x>0$. Hence we must have $s \geq 0$. Expanding the product and comparing coefficients, we find that

$$
\begin{equation*}
a=s-2\left(t+\frac{1}{t}\right), \quad c=s t^{2}-2\left(t+\frac{1}{t}\right), \quad b_{0}=2-2 s t+\left(t+\frac{1}{t}\right)^{2} \tag{3}
\end{equation*}
$$

Received June 13, 1949.

