A PROPERTY OF HAUSDORFF MEASURE

By H. G. EgGleston

1. A 1-1 transformation T of n-dimensional Euclidean space onto itself is said to be bounded if there exist two real numbers K, k with $K \geq k>0$ such that for any two points p_{1}, p_{2} of the space $k \rho\left(p_{1}, p_{2}\right) \leq \rho\left(T\left(p_{1}\right), T\left(p_{2}\right)\right) \leq$ $K \rho\left(p_{1}, p_{2}\right)$, where ρ denotes the Euclidean distance and $T\left(p_{1}\right)$ is the transform of p_{1} under T.

A real valued function $h(x)$ of a real variable x, defined for $x \geq 0$, is called a fractional measure function if
(i) $h(x)$ is continuous and strictly increasing,
(ii) $x^{n} / h(x)$ is an increasing function of x,
(iii) $h(0)=0, \lim _{x \rightarrow 0+} x^{n} / h(x)=0$.

For a point set A, let $\subseteq(A, \delta)$ denote an enumerable family of open convex sets whose point set sum includes A and which is such that each convex set of the family has diameter less than δ. Let $d(A)$ denote the diameter of A. The Hausdorff measure of A with respect to the measure function $h(x)$, denoted by h.m.A, is defined by [2] h.m.A $=\lim _{\delta \rightarrow 0}$ \{lower bound over all $\mathbb{S}(A, \delta)$ of $\left.\sum_{\ell(A, \delta)} h(d)\right\}$.

If two measure functions $h(x), H(x)$ are such that

$$
\lim _{x \rightarrow 0+} h(x) / H(x)=\lim _{x \rightarrow 0+} H(x) / h(x)=0,
$$

they are said to be incomparable.
The object of this paper is to establish the following two theorems.
'Theorem 1. For any two fractional measure functions $H(x), h(x)$ and any two positive numbers α, β there exist two perfect point sets A, B such that
(i) H.m.A $=\alpha$, h.m. $\mathrm{B}=\beta$,
(ii) for any bounded transformation T, H.m. $(T(A) B)=$ h.m. $(T(A) B)=0$.

Theorem 2. If the conditions of Theorem 1 hold and, in addition, the measure functions are incomparable, the sets A and B can be chosen to satisfy conditions (i), (ii), and the additional condition
(iii) h.m. $\mathrm{A}=\infty$, H.m. $\mathrm{B}=\infty$.

As a corollary to Theorem 1 it follows that for any fractional measure function $h(x)$ there exist two closed sets A, B of finite h measure such that it is not possible to find decompositions $A=A_{0}+\sum_{1}^{\infty} A_{n}, B=B_{0}+\sum_{1}^{\infty} B_{n}$ with the properties that
(i) h.m. $\mathrm{A}_{0}=\mathrm{h} . \mathrm{m} \cdot \mathrm{B}_{0}=0$,
(ii) A_{n} is a translation of B_{n}.
(See [5]; a large number of related results have also been established by Piccard [4].)

Received May 7, 1949.

