CREMONA'S EQUATIONS AND THE PROPERNESS INEQUALITIES

By Gerald B. Huff

1. Introduction. Let a regular linear system of plane curves of dimension \boldsymbol{r} be determined by prescribing its order x_{0} and its multiplicities x_{1}, x_{2}, \cdots, x_{n} at a set of base points $P_{1}, P_{2}, \cdots, P_{n}$. If the general curve is irreducible, of genus g, and has no singularities except those prescribed at the base points, then the characteristic $x=\left(x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right)$ satisfies Cremona's equations [2]:

$$
\begin{align*}
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2} & =r+g-1 \\
3 x_{0}-x_{1}-x_{2}-\cdots-x_{n} & =r-g+1 \tag{I}
\end{align*}
$$

On the other hand, there exist solutions which are not characteristics of such linear systems (Ruffini [8; 5], [9; 483] erroneously gave ($10 ; 6,4,3^{5}, 1^{2}$) as describing a homaloidal net). Those solutions of (I) which are characteristics of such linear systems are said to be proper. For reasons given below, the $(n+1)$ tuples of type $(0 ; 0, \cdots, 0,-1,0, \cdots, 0)$ are defined to be proper.

If x is a proper solution and p is a proper solution of (I) for $g=r=0$ and such that $p_{0}<x_{0}$, then [7]

$$
\begin{equation*}
p_{0} x_{0}-p_{1} x_{1}-p_{2} x_{2}-\cdots-p_{n} x_{n} \geq 0 \quad\left(x_{0}>p_{0}\right) \tag{II}
\end{equation*}
$$

For $p_{0}>0$, this asserts that the total intersection multiplicity of the curve of characteristic p with an irreducible curve of the system of characteristic x can not exceed $p_{0} x_{0}$. For p of the type ($0 ; 0, \cdots, 0,-1,0, \cdots, 0$), this states that the multiplicities in a characteristic x with $x_{0}>0$ are non-negative. For any x, proper or not, there is defined a finite set of inequalities (II), the properness inequalities for that x It has been conjectured [3; 11, 15] that solutions of Cremona's equations which also satisfy the properness inequalities are proper. This paper examines the arithmetic implications of (I) and (II) and shows in particular that the answer is in the affirmative for $g=0,1$ and $r>0$.

For any n, the set of all x for which x_{0}, r, and g are non-negative will be designated by A_{n}. In particular, A_{n} contains all proper solutions. The bilinear form $x_{0} y_{0}-x_{1} y_{1}-\cdots-x_{n} y_{n}$ is abbreviated to ($x y$). Certain $(n+1)$-tuples are represented by a, b_{i}, c, and $d_{i j k}: b_{i}=(0 ; 0, \cdots, 0,-1,0, \cdots, 0)$, where $x_{i}=-1$ and $x_{s}=0$ for $s \neq i ; c=(1 ; 0,0, \cdots, 0) ; a=3 c-\sum_{i} b_{i}$; and $d_{i j k}=c-b_{i}-b_{i}-b_{k}$. In this notation, the fundamental relations take the form:

$$
\begin{equation*}
(x x)=r+g-1, \quad(a x)=r-g+1 \tag{I}
\end{equation*}
$$

Received May 2, 1949; in revised form August 6, 1949. Presented to the American Mathematical Society, April 2, 1949. The results contained in this paper were obtained in the course of research sponsored by the Office of Naval Research under Contract No. N8onr-536.

