SETS SUBTENDING A CONSTANT ANGLE ON A CIRCLE

By John W. Green

1. Introduction. Let C be a closed circular area in the plane, C^{\prime}, its boundary, and K, a closed convex set in C which subtends at every point of C^{\prime} the same angle $\alpha, 0<\alpha<\pi$. By this is meant that, at each point P of C^{\prime} the angle between the two extreme supporting half lines to K at P is equal to α. If K is a circular area concentric with C and of radius $\sin \frac{1}{2} \alpha$ times the radius of C, it does subtend the angle α on C^{\prime}. The question arises then as to whether or not the fact that K subtends a constant angle on C^{\prime} implies that K is such a circle. (This problem was suggested by Professor F. A. Valentine at a seminar given by the author.)

It is shown in the following that the answer depends on the nature of the angle α. Let $\beta=\pi-\alpha$; we shall call K a β-set if K subtends $\pi-\beta$ on C^{\prime}. If β is an irrational multiple of π, or if $\beta=(m / n) \pi$ where m / n in its lowest terms has even numerator, the only β-set is the concentric circle of radius $\cos \frac{1}{2} \beta$. If β is any other angle between zero and π, there exist non-circular β-sets, and these can be constructed with a considerable degree of arbitrariness.

In the case where non-circular β-sets are possible, a number of extremal properties are found, involving their perimeters, diameters, and widths.

For facts and formulas relating to convex bodies, used but not proved, see [1].
2. A necessary and sufficient condition for a β-set. Let C be of radius 1 and centered at the origin of the $x-y$ plane. Let $p(\theta)$ be the supporting function of K, that is, the distance from the origin to the supporting line normal to that half line issuing from the origin and making an angle θ with the x axis. It is easily verified in our case that K must contain the origin as an interior point and that K can have no points on C^{\prime}, and so $0<p(\theta)<1$. Let P be on $C^{\prime \prime}$ and S_{1}, S_{2} be the two supporting lines to K through P, which intersect in the angle $\pi-\beta$. If half lines R_{1} and R_{2} are drawn from O, normal to S_{1} and S_{2}, respectively, one will make an angle θ with the x axis and the other, an angle $\theta+\beta$. The distances from the origin to the supporting lines are $p(\theta)$ and $p(\theta+\beta)$, and one is led to the relation

$$
\begin{equation*}
\cos ^{-1} p(\theta)+\cos ^{-1} p(\theta+\beta)=\beta \tag{1}
\end{equation*}
$$

Here and henceforth the arc cosine will denote first quadrant angles. If in (1), θ is advanced by β, the result will, when subtracted from (1), yield $p(\theta)=$ $p(\theta+2 \beta)$; that is, 2β is a period of $p(\theta)$. Now 2π is also a period of $p(\theta)$; hence, if β is an irrational multiple of $\pi, p(\theta)$ will have two incommensurable periods and, being continuous, will be constant. This makes K a circle with O as center.

Received March 15, 1949.

