THE ROOTS OF TRIGONOMETRIC INTEGRALS

By N. G. de Bruifn

1. Introduction. Concerning the roots of trigonometric integrals G. Pólya (see references at the end of the paper) has proved a number of results which he derived from properties of the roots of polynomials. He proved, for instance, the reality of all the roots of the following functions:

$$
\begin{array}{lr}
\int_{-\infty}^{\infty} e^{-t^{2 n}} e^{i z t} d t & (n=1,2,3, \cdots) \\
\int_{-\infty}^{\infty} C(t) e^{i z t} d t & (\lambda>0) \tag{1.2}
\end{array}
$$

where $C(t)=\exp (-\lambda \cosh t)$, and

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(-a t^{4 n}+b t^{2 n}+c t^{2}\right) \exp i z t d t \tag{1.3}
\end{equation*}
$$

where $a>0, b$ real, $c \geq 0, n=1,2,3, \cdots$. (See concerning (1.1), [7], [8]; concerning (1.2), [6], [8]; concerning (1.3), [8].)

Another important result of Pólya is the following one (see [8]): Suppose that the function $F(t)$ of the real variable t satisfies

$$
\begin{align*}
& F(t) \text { integrable over }-\infty<t<\infty ; F(t)=(F(-t))^{*},-\infty<t<\infty ; \\
& F(t)=O\left(e^{-\left.|t|\right|^{b}}\right) \text { for } t \rightarrow \pm \infty, b>2 \tag{1.4}
\end{align*}
$$

(The * indicates the conjugate imaginary.)
Let $\varphi(t)$ be an integral function of genus 0 or 1 , with real roots only, and let the number γ be ≥ 0. If the function $F(t)$ is such that all the roots of the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} F(t) e^{i z t} d t \tag{1.5}
\end{equation*}
$$

are real, then the same holds for the function $\int_{-\infty}^{\infty} F(t) \varphi(i t) e^{\gamma t^{3}} e^{i z t} d t$.
The function $\varphi(i t) e^{\gamma t^{2}}$ is easily seen to be the limit of a sequence of polynomials, all of whose roots are purely imaginary. Pólya's result, stated in other words, is that these functions are universal factors, which conserve the reality of the roots of any trigonometric integral whose integrand satisfies (1.4). Pólya also proved that the functions $\varphi(i t) e^{\gamma^{2}}$ indicated above are the only analytical functions with this property. The latter result will not be used in the present paper.

Received July 16, 1948.

