EXPANSIONS IN BANACH SPACES

By Bernard R. Gelbaum

1. Introduction. Various questions concerning the existence and character of series expansions in Banach spaces will be discussed in what follows. Throughout, we shall assume a certain fundamental familiarity with the contents of Banach's book [2]. Where advisable, definitions and theorems of a more obscure nature will be quoted together with their sources in the literature.

In Chapter I the properties of special bases in c_{0} and l are investigated. Examples of the following are given:
(a) absolute and non-absolute bases for c_{0};
(b) retro- and non-retro-bases for l (see Definition 1);
(c) a basis for c_{0} whose associated biorthogonal functionals fail to span l.

Chapter II contains a treatment of the relationships subsisting among complemented manifolds, projections and bases (see Definition 2). We show that to each projection on a complemented manifold there corresponds, for each basis of the manifold, a unique set of biorthogonal linear functionals which serve to define the projection in a natural manner. This and the concept of a retrobasis, which stems from the investigations of Chapter I, lead to some theorems on reflexivity. The chapter is concluded with a discussion of absolute and Toeplitz bases of various types.

Chapter I

1. Let E be a Banach space, E^{*} its conjugate space, $E^{* *}$ its second conjugate space, etc. The elements of $E, E^{*}, E^{* *}, E^{* * *}$, will be denoted by x, X, f, F respectively. Since various types of weak convergence will occur in the following we note:
(a) X_{n} is said to converge *-weakly (to X) if $X_{n}(x)$ converges (to $X(x)$) for all x in E;
(b) x_{n} is said to converge weakly (to x) if $X\left(x_{n}\right)$ converges (to $X(x)$) for all X in E^{*}.
$\left[x_{\lambda}\right]$ and $\left[X_{\lambda}\right]$ will denote the linear closures of the sets $\left\{x_{\lambda}\right\}$ and $\left\{X_{\lambda}\right\}$. If W is an arbitrary subset of E, we shall denote by W^{+}the set: $\{X \mid X(x)=0$, for all x in $W\}$. Similarly for a W in E^{*}, W_{+}will be the set: $\{x \mid X(x)=0$, for all X in $W\}$. We shall say X and x are orthogonal if $X(x)=0$.
2. Definition 1. A sequence of elements $\left\{x_{n}\right\}$ in E is called a basis for E if, for every x in E, there is a unique sequence of real numbers $\left\{a_{n}\right\}$ such that the

Received June 21, 1948; in revised form, June 7, 1949.

