RAMANUJAN SUMS AND THE AVERAGE VALUE OF ARITHMETIC FUNCTIONS

By Richard Bellman

1. Introduction. Let us consider the number-theoretic function $d(n)$, the number of divisors of n. Although this function possesses a quite erratic behavior, assuming its minimum value 2 at the primes, and satisfying the inequality $d(n) \geq \exp ((1-\epsilon) \log 2 \log n / \log \log n)$ over another infinite sequence of integers, it was shown by Dirichlet that $d(n)$ possesses an average value which is quite smooth. It is moreover easy to show that $d\left(n^{k}\right)$ and $d(n)^{k}$ for $k=1,2, \cdots$ have mean values which are powers of $\log n$. Hence, it might be expected that for many sequences $\left\{a_{n}\right\}$, which behave like polynomial sequences, the relation $\sum_{n \leq N} d\left(a_{n}\right) \sim c_{1} N(\log N)^{c_{2}}$, where c_{1} and c_{2} depend upon the sequence $\left\{a_{n}\right\}$, would hold. That this cannot be true for sequences that increase too rapidly is clearly seen by considering the sequence $\left\{2^{n}\right\}$.

Using a device applicable only to the quadratic case, it was shown by Bellman and Shapiro [2] that $\sum_{n \leq N} d\left(a n^{2}+b n+c\right) \sim c_{3} N \log N$, if the polynomial is irreducible, $c_{3}=c_{3}(a, b, c)$, with $\log N$ replaced by $\log ^{2} N$ otherwise. The result is not elementary, although not difficult. For polynomials of higher degree, very little is known. It was shown by van der Corput [13] that $\sum_{n \leq N}$ $d^{l}(f(n))=O\left(N(\log N)^{c t}\right)$, where c_{4} depends upon the exponent l and the polynomial $f(x)$. For sums of the type $\sum_{n \leq N} d\left(a b^{n}+c\right)$ nothing is known.

The present paper grew out of an attempt to evaluate $\sum_{n \leq N} d(f(n))$. Unfortunately, this sum barely but thoroughly escapes the method given below, which was outlined in [1]. Using the method we can, however, demonstrate

Theorem 1. Let the number-theoretic function $\sigma_{-s}(n)$ be defined by

$$
\begin{equation*}
\sigma_{-s}(n)=\sum_{k \mid n} k^{-s} \tag{1.1}
\end{equation*}
$$

Then, for $\operatorname{Re}(s)>0$,

$$
\begin{equation*}
\sum_{n \leq N} \sigma_{-s}(f(n)) \sim c_{5}(s) N \tag{1.2}
\end{equation*}
$$

for any integer-valued polynomial $f(x)$. Further $\sum_{p} \sigma_{-s}(f(p)) \sim c_{6}(s) N / \log N$ where the summation is over the primes less than or equal to N.

The result is only non-trivial for $0<\operatorname{Re}(s) \leq 1$. The form of the constants will be explicitly determined subsequently. It will be seen that each becomes infinite for $s=0$. Since $\sigma_{0}(n)=d(n)$, it is clear that if, in place of (1.2), we could obtain an equality with a sufficiently small error term and if we knew

Received July 26, 1948; in revised form, February 16, 1949 and August 1, 1949.

