THE MATRIX EQUATION $A X=X B$

By W. V. Parker

1. Introduction. The matrix equation $A X=X B$ has been discussed by many writers (see [5], [4]). In this paper the matrix A is taken in rational canonical form and the matrix X is obtained in terms of parameters. The relation $A_{0} X_{0}=X_{0} B$ is true if, and only if, $P A_{0} X_{0}=P X_{0} B$ for every nonsingular matrix P. This is equivalent to $A X=X B$ where $A=P A_{0} P^{-1}$ and $X=P X_{0}$. Hence if all solutions of $A X=X B$ are known, so are all solutions of $A_{0} X=X B$ if a non-singular matrix P is given so that $P A_{0} P^{-1}=A$.
In the latter part of the paper the set S of all matrices commutative with A is considered. If k is the number of invariant factors of $\lambda I-A$ and X is a matrix of S, there is a matrix polynomial $M(\lambda)$ of degree k associated with X such that if $F(\mu, \lambda)=\left|\mu I_{k}-M(\lambda)\right|$, then $F(X, A)=0$.

If A_{0} is a square matrix of order n, there exists a non-singular matrix P such that $P A_{0} P^{-1}=A=\operatorname{diag}\left\{A_{1}, A_{2}, \cdots, A_{k}\right\}[1 ; 105]$ where

$$
A_{i}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{1}\\
0 & 0 & 1 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & 0 & \cdots & 1 \\
a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i n_{i}}
\end{array}\right] \quad(i=1,2, \cdots, k)
$$

and $n_{i} \geq n_{i+1}$. The characteristic function of A_{i} is

$$
\begin{equation*}
\phi_{i}(\lambda)=\lambda^{n_{i}}-\left(a_{i 1}+a_{i 2} \lambda+\cdots+a_{i n_{i}} \lambda^{n_{i}-1}\right) \tag{2}
\end{equation*}
$$

and $\phi_{i}(\lambda)$ is divisible by $\phi_{i+1}(\lambda)$. In the discussion to follow it will be assumed that A is in this form.
2. Non-derogatory matrices. The matrix A_{0} is non-derogatory if $k=1$. That is, the characteristic function of A_{0} is also its minimum function. Each matrix A_{i} given by (1) is non-derogatory.

Consider the equation

$$
\begin{equation*}
A_{i} X=X B \tag{3}
\end{equation*}
$$

where B is a square matrix of order m and X is to be determined. If X satisfies
(3) then $g\left(A_{i}\right) X=X g(B)$ for every scalar polynomial $g(\lambda)$. The r-th row of

Received February 16, 1949.

